Ta có:
\(A=2^{100}-2^{99}+2^{98}-2^{97}+...+2^2-2\)
\(\Rightarrow A=\left(-2\right)^{100}+\left(-2\right)^{99}+\left(-2\right)^{98}+\left(-2\right)^{97}+...+\left(-2\right)^2+\left(-2\right)\)\(\Rightarrow-2A=\)\(\left(-2\right)^{101}+\left(-2\right)^{100}+\left(-2\right)^{99}+\left(-2\right)^{98}+...+\left(-2\right)^3+\left(-2\right)^2\)
\(\Rightarrow-2A-A=\left(-2\right)^{101}-\left(-2\right)\)
\(\Rightarrow-3A=\left(-2\right)^{101}+2\)
\(\Rightarrow A=\frac{2-2^{101}}{-3}\)
\(A=2^{100}-2^{99}+2^{98}-2^{97}+.....+2^2-2 \)
\(2A=2^{101}-2^{100}+2^{99}-2^{98}+......+2^3-2^2\)\(2A+A=2^{101}-2^{100}+2^{99}-2^{98}+.....+2^3-2^2+2^{100}-2^{99}+2^{98}-2^{97}+.....+2^2-2\)\(2A+A=2^{101}-2\)
\(3A=2^{101}-2\)