\(=x^3-\left(x-6\right)x^{29}+\left(x-6\right)x^{28}-\left(x-6\right)x^{27}+...+\left(x-6\right)x^2-\left(x-6\right)x+x-6\)
=\(x^{30}-x^{30}+6x^{29}+x^{29}-6x^{28}-x^{28}+6^{27}+...+x^3-6x^2-x^2+6x+x-6\)
=\(7\left(x^{29}-x^{28}+x^{27}+...+x^2-x\right)+6\)