a) \(\left(x+2\right)\left(x^2-2x+4\right)-\left(x^3+1\right)\)\(=x^3-2^3-x^3-1=-8-1=-9\)
b) \(\left(3x^2-6x\right)3x+\left(3x-1\right)^2\left(3x-1\right)\)
\(=\left(9x^3-18x^2\right)+\left(3x-1\right)^3\)
\(=9x^3-18x^2+27x^3-1\)
\(=36x^3-18x^2-1\)
a, (x+2).(x^2-2x+4)-(x^3+1)
= (x+2).(x^2-2x+2^2)-(x^3+1)
= (x^3+2^3)-(x^3+1)
= x^3+2^3-x^3-1
= x^3+8-x^3-1
=7
a, (x+2)(x2 -2x+4) - (x3 +1)
= x3 +23 -(x3 +1)
= x3 +8 -x3 - 1
=7
b,(3x2 -6x).3x +(3x-1)2 .(3x-1)
= 9x3 - 18x2 +(3x-1)3
= 9x3 - 18x2 + 27x3 -27x2 +9x - 1
= 36x3 -45x2 +9x - 1
b, (3x^2-6x).3x+(3x-1)^2.(3-1)
= (9x^3-18x^2)+ (9x^2-1).(3x-1)
= 9x^3-18x^2+27x^3-3x-9x^2+1
= 36x^3 - 27x^2 -3x+1