\(\text{a) }ĐKXĐ:x\ne2;x\ne3\\ \Rightarrow Q=\dfrac{2x-9}{x^2-5x+6}-\dfrac{x+3}{x-2}+\dfrac{2x+1}{x-3}\\ =\dfrac{2x-9}{\left(x-2\right)\left(x-3\right)}-\dfrac{\left(x+3\right)\left(x-3\right)}{\left(x-2\right)\left(x-3\right)}+\dfrac{\left(2x+1\right)\left(x-2\right)}{\left(x-2\right)\left(x-3\right)}\\ =\dfrac{2x-9-x^2+9+2x^2+x-4x-2}{\left(x-2\right)\left(x-3\right)}\\ =\dfrac{x^2-x-2}{\left(x-2\right)\left(x-3\right)}=\dfrac{x^2-2x+x-2}{\left(x-2\right)\left(x-3\right)}\\ =\dfrac{\left(x^2-2x\right)+\left(x-2\right)}{\left(x-2\right)\left(x-3\right)}=\dfrac{x\left(x-2\right)+\left(x-2\right)}{\left(x-2\right)\left(x-3\right)}\\ =\dfrac{\left(x+1\right)\left(x-2\right)}{\left(x-2\right)\left(x-3\right)}=\dfrac{x+1}{x-3}\)
Vậy \(Q=\dfrac{x+1}{x-3}\) với \(x\ne2;x\ne3\)
b) Với \(x\ne2;x\ne3\)
Để \(\left|Q\right|=1\)
thì \(\Rightarrow\left|\dfrac{x+1}{x-3}\right|=1\)
\(\Rightarrow\left[{}\begin{matrix}\dfrac{x+1}{x-3}=-1\\\dfrac{x+1}{x-3}=1\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x+1=3-x\\x+1=x-3\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x+x=3-1\\x-x=-3-1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=2\\0x=-4\left(\text{ Vô nghiệm }\right)\end{matrix}\right.\\ \Leftrightarrow x=1\left(T/m\right)\)
Vậy để \(\left|Q\right|=1\)
thì \(x=1\)
c) Với \(x\ne2;x\ne3\)
\(\text{Ta có : }Q=\dfrac{x+1}{x-3}=\dfrac{x-3+4}{x-3}\\ =\dfrac{x-3}{x-3}+\dfrac{4}{x-3}=1+\dfrac{4}{x-3}\)
\(\Rightarrow\) Để Q nhận giá trị nguyên
thì \(\Rightarrow\dfrac{4}{x-3}\in Z\)
\(\Rightarrow4⋮x-3\\ \Rightarrow x-3\inƯ_{\left(4\right)}\\ \Rightarrow x-3\in\left\{\pm1;\pm2;\pm4\right\}\)
Lập bảng giá trị:
\(x-3\) | \(-4\) | \(-2\) | \(-1\) | \(1\) | \(2\) | \(4\) |
\(x\) | \(-1\left(T/m\right)\) | \(1\left(T/m\right)\) | \(2\left(K^0\text{ }T/m\right)\) | \(4\left(T/m\right)\) | \(5\left(T/m\right)\) | \(7\left(T/m\right)\) |
Vậy để Q nhận giá trị nguyên
thì \(x\in\left\{-1;1;4;5;7\right\}\)
d) Với \(x\ne2;x\ne3\)
Để \(Q\) nhận giá trị âm
thì \(\Rightarrow\dfrac{x+1}{x-3}< 0\)
Lập bảng xét dấu:
\(\Rightarrow-1< x< 3\)
Vậy để \(Q\) nhận giá trị âm
thì \(-1< x< 3;x\ne2\)