(x+2)(x+3)(x+4)(x+5)-24
=\([\left(x+2\right)\left(x+5\right)].[\left(x+3\right)\left(x+4\right)]-24\)
=(x2+5x+2x+10)(x2+4x+3x+12)
=(x2+7x+10)(x2+7x+12)
Đặt x2+7x+10=t
\(\Rightarrow\)t(t+2)-24
\(\Leftrightarrow\)t2+2t-24
\(\Leftrightarrow\)t2+6t-4t-24
\(\)\(\Leftrightarrow\)t(t+6)-4(t+6)
\(\Leftrightarrow\)(t+6)(t-4)
Thay t=x2+7x+10 ta được
(x2+7x+10+6)(x2+7x+10-4)
\(\Leftrightarrow\)(x2+7x+16)(x2+7x+6)
\(\Leftrightarrow\)(x2+7x+16)(x2+x+6x+6)
\(\Leftrightarrow\)(x2+7x+16)x(x+1)6(x+1)
\(\Leftrightarrow\)(x2+7x+16)(x+1)(x+6)