a, \(x^2-6=x^2-\sqrt{6^2}=\left(x-\sqrt{6}\right)\left(x+\sqrt{6}\right)\)
b, \(x^2+2\sqrt{3}x+3=x^2+2\sqrt{3}x+\sqrt{3}=\left(x+\sqrt{3}\right)^2=\left(x+\sqrt{3}\right)\left(x+\sqrt{3}\right)\)
c, \(x^2-2\sqrt{5}x+5=x^2-2\sqrt{5}x+\sqrt{5}=\left(x-\sqrt{5}\right)^2=\left(x-\sqrt{5}\right)\left(x-\sqrt{5}\right)\)
a: \(x^2-6=\left(x-\sqrt{6}\right)\left(x+\sqrt{6}\right)\)
b: \(x^2+2\sqrt{3}x+3=\left(x+\sqrt{3}\right)^2\)
c: \(x^2-2\sqrt{5}x+5=\left(x-\sqrt{5}\right)^2\)