x3 - 19x - 30
= x3 - 9x - 10x - 30
= x(x2 - 9) - 10.(x + 3)
= x(x2 - 32) - 10.(x + 3)
= x.(x+3).(x-3) - 10.(x+3)
= (x+3).[x.(x-3) - 10]
= (x+3).(x2 - 3x - 10)
= (x+3).(x2 + 2x - 5x - 10)
= (x+3).[x(x+2) - 5(x+2)]
= (x+3).(x+2).(x-5).
Bài 1:
Ta có:
\(x^3-19x-30\\ =x^3-5x^2+5x^2-25x+6x-30\\ =x^2\left(x-5\right)+5x\left(x-5\right)+6\left(x-5\right)\\ =\left(x-5\right)\left(x^2+5x+6\right)\\ =\left(x-5\right)\left(x+2\right)\left(x+3\right)\)
Bafi2:
\(\left(x-2\right)\left(x^2+2x+7\right)+2\left(x^2-4\right)-5\left(x-2\right)=0\\ \Leftrightarrow\left(x-2\right)\left(x^2+2x+7\right)+2\left(x-2\right)\left(x+2\right)-5\left(x-2\right)=0\\ \Leftrightarrow\left(x-2\right)\left(x^2+2x+7+2x+4-5\right)=0\\ \Leftrightarrow\left(x-2\right)\left(x^2+4x+6\right)=0\\ \Leftrightarrow x-2=0\left(dox^2+4x+6>0\right)\\ \Leftrightarrow x=2\)
Vậy x=2
Ta có: (x-2)(x2 + 2x + 7) + 2(x2 -4) - 5(x-2) = 0
(x-2)(x2 + 2x + 7) + 2(x2 - 22) - 5(x-2) = 0
(x-2)(x2 + 2x + 7) + 2(x-2)(x+2) - 5(x-2) = 0
(x-2). [(x2 + 2x + 7) + 2(x+2) - 5] = 0
(x-2).[x2 + 2x + 7 + 2x + 4 - 5] = 0
(x-2).[x2 + 4x + 6] = 0
=> x-2 = 0 (x2 + 4x + 6 > 0)
+) x - 2 = 0
=> x = 2
Vậy x = 2.