Violympic toán 8

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Nii-chan

phân tích đa thức thành nhân tử:

g) x2+ 2xz+ 2xy + 4yz

h) ( 3x + 2)2 +( 3x+2)2 - 2(9x2 - 4)

k) x2 - m2 - 4xy + 2m + 4y2 - 1

l) bc.( a+d) .( b-c) - ac ( b+d). (a-c) + ab(c+d).(a-b)

Nguyễn Lê Phước Thịnh
6 tháng 8 2020 lúc 22:12

g) Ta có: \(x^2+2xz+2xy+4yz\)

\(=x\left(x+2z\right)+2y\left(x+2z\right)\)

\(=\left(x+2z\right)\left(x+2y\right)\)

h) Ta có: \(\left(3x+2\right)^2+\left(3x-2\right)^2-2\left(9x^2-4\right)\)

\(=\left(3x+2\right)^2-2\cdot\left(3x+2\right)\cdot\left(3x-2\right)+\left(3x-2\right)^2\)

\(=\left(3x+2-3x+2\right)^2=4^2=16\)

k) Ta có: \(x^2-m^2-4xy+2m+4y^2-1\)

\(=\left(x^2-4xy+4y^2\right)-\left(m^2-2m+1\right)\)

\(=\left(x-2y\right)^2-\left(m-1\right)^2\)

\(=\left(x-2y+m-1\right)\left(x-2y-m+1\right)\)

l) Ta có: \(bc\left(a+d\right)\cdot\left(b-c\right)-ac\left(b+d\right)\left(a-c\right)+ab\left(c+d\right)\left(a-b\right)\)

\(=bc\left(ab-ac+bd-cd\right)-ac\left(ab-bc+ad-cd\right)+ab\left(ac-bc+ad-bd\right)\)

\(=ab^2c-abc^2+b^2cd-bc^2d-a^2bc+abc^2-a^2cd+ac^2d+a^2bc-ab^2c+a^2bd-ab^2d\)

\(=b^2cd-bc^2d-a^2cd+ac^2d+a^2bd-ab^2d\)

\(=bcd\left(b-c\right)-a^2d\left(c-b\right)+ad\left(c^2-b^2\right)\)

\(=bcd\left(b-c\right)+a^2d\left(b-c\right)-ad\left(b^2-c^2\right)\)

\(=bcd\left(b-c\right)+a^2d\left(b-c\right)-ad\left(b-c\right)\left(b+c\right)\)

\(=\left(b-c\right)\left[bcd+a^2d-ad\left(b+c\right)\right]\)

\(=\left(b-c\right)\cdot\left(bcd+a^2d-abd-acd\right)\)

\(=\left(b-c\right)\left[cd\left(b-a\right)+ad\left(a-b\right)\right]\)

\(=\left(b-c\right)\left[cd\left(b-a\right)-ad\left(b-a\right)\right]\)

\(=\left(b-c\right)\left(b-a\right)\left(cd-ad\right)\)

\(=\left(b-c\right)\left(b-a\right)\cdot d\cdot\left(c-a\right)\)


Các câu hỏi tương tự
Xem chi tiết
phamthiminhanh
Xem chi tiết
Nguyễn Thái Sơn
Xem chi tiết
Quách Thị Ngọc Diệp
Xem chi tiết
Ngọc Thảo
Xem chi tiết
nguyen ngoc son
Xem chi tiết
Lê Quang Dũng
Xem chi tiết
Linh Ngô
Xem chi tiết
Nii-chan
Xem chi tiết