a)
\(x^7+x^2+1=x^7-x+x^2+x+1\)
\(=x(x^6-1)+x^2+x+1\)
\(=x(x^3-1)(x^3+1)+(x^2+x+1)\)
\(=x(x-1)(x^2+x+1)(x^3+1)+(x^2+x+1)\)
\(=(x^2+x+1)[x(x-1)(x^3+1)+1]\)
\(=(x^2+x+1)(x^5-x^4+x^2-x+1)\)
b)
\(x^8+x+1=x^8-x^2+x^2+x+1\)
\(=x^2(x^6-1)+(x^2+x+1)\)
\(=x^2(x^3-1)(x^3+1)+(x^2+x+1)\)
\(=x^2(x-1)(x^2+x+1)(x^3+1)+(x^2+x+1)\)
\(=(x^2+x+1)[x^2(x-1)(x^3+1)+1]\)
\(=(x^2+x+1)(x^6-x^5+x^3-x^2+1)\)
c)
\(x^8+x^7+1=x^8-x^2+x^7-x+x^2+x+1\)
\(=x^2(x^6-1)+x(x^6-1)+x^2+x+1\)
\(=(x^6-1)(x^2+x)+(x^2+x+1)\)
\(=(x^3-1)(x^3+1)(x^2+x)+(x^2+x+1)\)
\(=(x-1)(x^2+x+1)(x^3+1)(x^2+x)+(x^2+x+1)\)
\(=(x^2+x+1)[(x-1)(x^3+1)(x^2+x)+1]\)
\(=(x^2+x+1)(x^6-x^4+x^3-x+1)\)
d) Biểu thức không phân tích được thành nhân tử.
e)
\(x^{10}+x^5+1=x^{10}-x+x^5-x^2+x^2+x+1\)
\(=x(x^9-1)+x^2(x^3-1)+(x^2+x+1)\)
\(=x[(x^3)^3-1^3]+x^2(x^3-1)+(x^2+x+1)\)
\(=x(x^3-1)(x^6+x^3+1)+x^2(x^3-1)+(x^2+x+1)\)
\(=(x^3-1)[x(x^6+x^3+1)+x^2]+(x^2+x+1)\)
\(=(x-1)(x^2+x+1)(x^7+x^4+x^2+x)+(x^2+x+1)\)
\(=(x^2+x+1)[(x-1)(x^7+x^4+x^2+x)+1]\)
\(=(x^2+x+1)(x^8-x^7+x^5-x^4+x^3-x+1)\)