a) \(x^5+x-1=x^5+x^3+x-x^3-1\)
\(=x\left(x^4+x^2+1\right)-\left(x+1\right)\left(x^2-x+1\right)\)
\(=x\left(x^4+2x^2+1-x^2\right)-\left(x+1\right)\left(x^2-x+1\right)\)
\(=x\left[\left(x^2+1\right)^2-x^2\right]-\left(x+1\right)\left(x^2-x+1\right)\)
\(=x\left(x^2-x+1\right)\left(x^2+x+1\right)-\left(x+1\right)\left(x^2-x+1\right)\)
\(=\left(x^2-x+1\right)\left(x^3+x^2+x-x-1\right)\)
\(=\left(x^2-x+1\right)\left(x^3+x^2-1\right)\)
b) Câu hỏi của Trần Thiện Khiêm - Toán lớp 8 - Học toán với OnlineMath