\(\left\{{}\begin{matrix}a+b=m\\a-b=n\end{matrix}\right.\)\(\Rightarrow4ab=m^2-n^2\)
Ta có:
\(A=\left(m+c\right)^3-4.\dfrac{m^3+3mn^2}{4}-4c^3-3c\left(m^2-n^2\right)\)
\(=3.\left(-c^3+mc^2-mn^2+cn^2\right)\)
\(=3.\left(m-c\right).\left(c+n\right).\left(c-n\right)\)
\(\Rightarrow A=3.\left(a+b-c\right).\left(c+a-b\right).\left(c-a+b\right)\)