`16x^2z^2+y^2-z^2-16x^2y^2`
`=16x^2(z^2-y^2)+(y^2-z^2)`
`=16x^2(z-y)(y+z)+(y-z)(y+z)`
`=(y+z)[16x^2(z-y)+y-z]`
`=(y+z)(16x^2z-16x^2y+y-z)`
\(16x^2z^2+y^2-z^2-16x^2y^2\\ =16x^2\left(z^2-y^2\right)-\left(z^2-y^2\right)\\ =\left(z^2-y^2\right)\left(16x^2-1\right)\\ =\left(z-y\right)\left(z+y\right)\left(4x+1\right)\left(4x-1\right)\)
\(16x^2z^2-16x^2y^2+y^2-z^2\)
\(=16x^2\left(z^2-y^2\right)-\left(z^2-y^2\right)\)
\(=\left(z-y\right)\left(z+y\right)\left(4x-1\right)\left(4x+1\right)\)