\(x^4-3x^3-x+3\)
\(=x^4-x^3-2x^3+2x-3x+3\)
\(=\)\(x^3\left(x-1\right)-2x\left(x^2-1\right)-3\left(x-1\right)\)
\(=x^3\left(x-1\right)-2x\left(x-1\right)\left(x+1\right)-3\left(x-1\right)\)
\(=\left[x^3-2x\left(x+1\right)-3\right]\left(x-1\right)\)
\(=\left[x^3-2x^2-2x-3\right]\left(x-1\right)\)
\(=\)\(\left[x^3-3x^2+x^2-3x+x-3\right]\left(x-1\right)\)
\(=\left[x^2\left(x-3\right)+x\left(x-3\right)+\left(x-3\right)\right]\left(x-1\right)\)
\(=\left[\left(x-3\right)\left(x^2+x+1\right)\right]\left(x-1\right)\)
\(x^4-3x^3-x+3\)
= \(x\left(x-3\right)-\left(x-3\right)\)
= \(\left(x-1\right)\left(x-3\right)\)
x4 - 3x3 - x + 3
= (x4 - 3x3) - (x + 3)
= x3 (x - 3) - (x - 3)
= (x - 3)(x3 - 1)
Chúc bạn học tốt