a)\(x^3-x^2-x+1=\left(x^3-x\right)-\left(x^2-1\right)=x\left(x^2-1\right)-\left(x^2-1\right)=\left(x-1\right)^2.\left(x+1\right)\)
b)\(x^3+x^2-4x-4=x^2\left(x+1\right)-4\left(x+1\right)=\left(x^2-4\right)\left(x+1\right)=\left(x+2\right)\left(x-2\right)\left(x+1\right)\)
c)\(a^5+27a^2=a^2\left(a^3+27\right)=a^2\left(a+3\right)\left(a^2-3a+9\right)\)
d)\(x^4-8x=x\left(x^3-8\right)=x\left(x-2\right)\left(x^2+2x+4\right)\)
e)\(x^4-4x^3+4x^2=x^2\left(x^2-4x+4\right)=x^2\left(x-2\right)^2\)
f)\(2x^4-32=2\left(x^4-16\right)=2\left(x^2+4\right)\left(x^2-4\right)=2\left(x^2+4\right)\left(x+2\right)\left(x-2\right)\)
a) \(x^3-x^2-x+1\)
\(=x^2\left(x-1\right)-\left(x-1\right)\)
\(=\left(x^2-1\right)\left(x-1\right)\)
\(=\left(x-1\right)\left(x+1\right)\left(x-1\right)=\left(x-1\right)^2\left(x+1\right)\)
b) \(x^3+x^2-4x-4\)
\(=x^2\left(x+1\right)-4\left(x+1\right)\)
\(=\left(x^2-4\right)\left(x+1\right)\)
\(=\left(x-2\right)\left(x+2\right)\left(x+1\right)\)
c) \(a^5+27a^2=a^2\left(a^3+27\right)\)
\(=a^2\left(a+3\right)\left(a^2-3a+9\right)\)
d) \(x^4-8x=x\left(x^3-8\right)\)
\(=x\left(x-2\right)\left(x^2+2x+4\right)\)
e) \(x^4-4x^3+4x^2\)
\(=\left(x^2\right)^2-2\cdot x^2\cdot2x+\left(2x\right)^2\)
\(=\left(x^2+2x\right)^2\)\(=\left[x\left(x+2\right)\right]^2=x^2\left(x+2\right)^2\)
f) \(2x^4-32=2\left(x^4-16\right)\)
\(=2\left(x^2-4\right)\left(x^2+4\right)\)
\(=2\left(x-2\right)\left(x+2\right)\left(x^2+4\right)\)