Cho \(\left\{{}\begin{matrix}x,y,z>0\\xy+yz+zx=1\end{matrix}\right.\)
Tính \(S=x\sqrt{\dfrac{\left(1+y^2\right)\left(1+z^2\right)}{1+x^2}}+y\sqrt{\dfrac{\left(1+z^2\right)+\left(1+x^2\right)}{1+y^2}}+z\sqrt{\dfrac{\left(1+x^2\right)+\left(1+y^2\right)}{1+z^2}}\)
Tìm GTNN của biểu thức:
\(A=\dfrac{x^2}{x+y}+\dfrac{y^2}{y+z}+\dfrac{z^2}{x+z}\)
Biết\(\left\{{}\begin{matrix}x.y.z>0\\\sqrt{xy}+\sqrt{yz}+\sqrt{zx}=1\end{matrix}\right.\)
cho các số x,y,z thoả mãn \(\dfrac{x}{y-z}+\dfrac{y}{z-x}+\dfrac{z}{x-y}=0\)
tính giá trị biểu thức A=\(\dfrac{x}{\left(y-z\right)^2}+\dfrac{y}{\left(z-x\right)^2}+\dfrac{z}{\left(x-y\right)^2}\)
cho x,y,z là các số thực thỏa mãn \(\left(\sqrt{x}+\sqrt{y}\right)\left(\sqrt{y}+\sqrt{z}\right)\left(\sqrt{z}+\sqrt{x}\right)=1\)
Tính giá trị biểu thức P=\(\dfrac{\sqrt{y}-\sqrt{z}}{x\left(\sqrt{x}+\sqrt{y}+\sqrt{z}\right)+1+\sqrt{xyz}}+\dfrac{\sqrt{z}-\sqrt{x}}{y\left(\sqrt{x}+\sqrt{y}+\sqrt{z}\right)+1+\sqrt{xyz}}+\dfrac{\sqrt{x}-\sqrt{y}}{z\left(\sqrt{x}+\sqrt{y}+\sqrt{z}\right)+1+\sqrt{xyz}}\)
Giải hệ phương trình :
a) \(\left\{{}\begin{matrix}x^2+y^2=1\\x^2+y^2=1\end{matrix}\right.\)
b)\(\left\{{}\begin{matrix}\sqrt{x}+\sqrt{y}+\sqrt{z}=2014\\\dfrac{1}{3x+2y}+\dfrac{1}{3y+2z}+\dfrac{1}{3z+2x}=\dfrac{1}{x+2y+3z}+\dfrac{1}{y+2x+3x}+\dfrac{1}{z+2x+3y}\end{matrix}\right.\)
Cho x,y,z là các số thực thỏa mãn \(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=\dfrac{1}{x+y+z}\)
Hãy tính giá trị của biểu thức: \(M=\dfrac{3}{4}+\left(x^8-y^8\right)\left(y^9+z^9\right)\left(z^{10}-x^{10}\right)\)
1) Cho x, y, z ϵ R thỏa mãn:
\(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=\dfrac{1}{x+y+z}\)
2) Tính giá trị biểu thức:
M = \(\dfrac{3}{4}+\left(x^8-y^8\right)\left(y^9+z^9\right)\left(z^{10}-x^{10}\right)\)
1 Giải hệ pt \(\left\{{}\begin{matrix}\left(x-1\right)^3=1-\dfrac{27}{y^3}\\x^2+\dfrac{9}{y^2}=2x\end{matrix}\right.\)
2 CM \(n^4-10n^2+9\) chia hết 384 với mọi n lẻ
3 cho \(0\le x\le\dfrac{1}{2}\) tìm Max Q=\(x^2\left(1-2x\right)\)
4 cho x,y,z dương thỏa \(x^2+y^2+z^2=3xyz\).CM \(\dfrac{x^2}{x^4+yz}+\dfrac{y^2}{y^4+xz}+\dfrac{z^2}{z^4+xy}\le\dfrac{3}{2}\)
Cho \(\)x, y, z \(\in\) R thỏa mãn \(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=\dfrac{1}{x+y+z}\).
Hãy tính giá trị của biểu thức: M = \(\dfrac{3}{4}+\left(x^8-y^8\right)\left(y^9+z^9\right)\left(z^{10}-x^{10}\right)\)