Từ \(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=\dfrac{1}{x+y+z}\Rightarrow\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}-\dfrac{1}{x+y+z}=0\)
\(\Rightarrow\dfrac{x+y}{xy}+\dfrac{x+y+z-z}{z\left(x+y+z\right)}=0\)
\(\Rightarrow\left(x+y\right)\left(\dfrac{1}{xy}+\dfrac{1}{z\left(x+y+z\right)}\right)=0\)
\(\Rightarrow\left(x+y\right)\left(\dfrac{zx+zy+z^2+xy}{xyz\left(x+y+z\right)}\right)=0\)
\(\Rightarrow\left(x+y\right)\left(y+z\right)\left(z+x\right)=0\)
Ta có: x8 - y8 = (x + y)(x - y)(x2 + y2)(x4 + y4)
y9 + z9 = (y + z)(y8 - y7z + y6z2 - ... + z8)
z10 - x10 = (z + x)(z4 - z3x + z2x2 - zx3 + z4)(z5 - x5)
Vậy M = \(\dfrac{3}{4}\) + (x + y)(y + z)(z + x) = \(\dfrac{3}{4}\)