1) Cho x, y, z ϵ R thỏa mãn:
\(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=\dfrac{1}{x+y+z}\)
2) Tính giá trị biểu thức:
M = \(\dfrac{3}{4}+\left(x^8-y^8\right)\left(y^9+z^9\right)\left(z^{10}-x^{10}\right)\)
Cho \(\)x, y, z \(\in\) R thỏa mãn \(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=\dfrac{1}{x+y+z}\).
Hãy tính giá trị của biểu thức: M = \(\dfrac{3}{4}+\left(x^8-y^8\right)\left(y^9+z^9\right)\left(z^{10}-x^{10}\right)\)
cho x,y,z là các số thực thỏa mãn \(\left(\sqrt{x}+\sqrt{y}\right)\left(\sqrt{y}+\sqrt{z}\right)\left(\sqrt{z}+\sqrt{x}\right)=1\)
Tính giá trị biểu thức P=\(\dfrac{\sqrt{y}-\sqrt{z}}{x\left(\sqrt{x}+\sqrt{y}+\sqrt{z}\right)+1+\sqrt{xyz}}+\dfrac{\sqrt{z}-\sqrt{x}}{y\left(\sqrt{x}+\sqrt{y}+\sqrt{z}\right)+1+\sqrt{xyz}}+\dfrac{\sqrt{x}-\sqrt{y}}{z\left(\sqrt{x}+\sqrt{y}+\sqrt{z}\right)+1+\sqrt{xyz}}\)
cho các số x,y,z thoả mãn \(\dfrac{x}{y-z}+\dfrac{y}{z-x}+\dfrac{z}{x-y}=0\)
tính giá trị biểu thức A=\(\dfrac{x}{\left(y-z\right)^2}+\dfrac{y}{\left(z-x\right)^2}+\dfrac{z}{\left(x-y\right)^2}\)
1. Tìm tất cả các số tự nhiên \(n\) để phân thức sau tối giản: \(A=\dfrac{2n^2+3n+1}{3n+1}\)
2. Cho các số thực dương x, y, z thỏa mãn \(xy^2z^2+x^2z+y=3z^2\) .Tìm giá trị lớn nhất của biểu thức: \(M=\dfrac{z^4}{1+z^4\left(x^4+y^4\right)}\)
cho x, y, z là các số thực dương thỏa mãn x+y+z\(\le\) 1
tìm gtnn của biểu thức: Q=\(2\left(x+y+z\right)+3\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)\)
Những câu hỏi hay :
Cho 3 số x,y,z thõa mãn : \(\left\{{}\begin{matrix}x+y+z=2020\\\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=\dfrac{1}{2020}\end{matrix}\right.\)
Tính giá trị của biểu thức : \(P=\left(x^{2009}+y^{2009}\right)\left(y^{2011}+z^{2011}\right)\left(z^{2013}+x^{2013}\right).\)
Cho 3 số thực dương x,y,z có tích bằng 1.Chứng minh rằng:
\(\dfrac{x^3}{\left(1+y\right)\left(1+z\right)}+\dfrac{y^3}{\left(1+z\right)\left(1+x\right)}+\dfrac{z^3}{\left(1+x\right)\left(1+y\right)}\ge\dfrac{3}{4}\)
Cho 3 số thực x,y,z thỏa mãn \(x+y=\left(\sqrt{x}+\sqrt{y}-\sqrt{z}\right)^2\)
Chứng minh: \(\dfrac{x+\left(\sqrt{x}-\sqrt{z}\right)^2}{y+\left(\sqrt{y}-\sqrt{z}\right)^2}=\dfrac{\sqrt{x}-\sqrt{z}}{\sqrt{y}-\sqrt{z}}\)