=>x+pi/3=-pi/2+k2pi
=>x=-5/6pi+k2pi
=>x+pi/3=-pi/2+k2pi
=>x=-5/6pi+k2pi
Phương trình: \(\dfrac{Sin^42x+Cos^42x}{Tan\left(\dfrac{\pi}{4}-x\right)Tan\left(\dfrac{\pi}{4}+x\right)}=Cos^4x\) có bao nhiêu điểm biểu diễn nghiệm trên đường tròn lượng giác
Nghiệm của phương trình \(sin^4x+cos^4x+cos\left(x-\dfrac{\pi}{4}\right).sin\left(3x-\dfrac{\pi}{4}\right)-\dfrac{3}{2}=0\)
Tìm nghiệm dương nhỏ nhất của phương trình
\(\cos\pi\left(x^2+2x-\dfrac{1}{2}\right)=\sin\left(\pi x^2\right)\)
Nghiệm của phương trình lượng giác tanx=tan pi/15 là
Cho phương trình \(3\sin^2x+2\left(m+1\right)sinx.cosx+m-2=0\)Số giá trị nguyên của m để trên khoảng\(\left(-\frac{\pi}{2};\frac{\pi}{2}\right)\)phương trình có hai nghiệm \(x_1,x_2\) với\(x_1\in\left(-\frac{\pi}{2};0\right),x_2\in\left(0;\frac{\pi}{2}\right)\)là
phương trình \(\cos x-\sin3x=\sqrt{2}\left(\cos x-\sin x\right)\sin4x\) có tổng tất cả các nghiệm \(x\in\left(0;\pi\right)\) là?
Đúng hay sai
//-------------------------
Đề bài :
Giải phương trình :
{{sin({2 x})} -{{cos({4 x})}} @plus {cos({2 x})}} = 0
//---------------
Bước (1) :
{{sin({2 x})} -{{cos({4 x})}} @plus {cos({2 x})}}=0
Đặt : u = {2 x} ⇒
{sin(u)}=0
//---------------
Bước (2) :
Nghiệm phương trình :
{sin(x)} = 0 :
x={{2 \pi} n}
x={{{2 \pi} n} @plus \pi}
//---------------
Bước (3) :
Nghiệm phương trình :
{{2 x} @plus {{-2 \pi} n}} = 0 :
x={\pi n}
//---------------
Bước (4) :
Nghiệm phương trình :
{{2 x} -{{({{2 \pi} n} @plus \pi)}}} = 0 :
x={{\pi n} @plus {{\frac{1}{2}} \pi}}
//---------------
Bước (5) :
Từ bước (1) (2) (3) (4) :
Nghiệm phương trình :
{{sin({2 x})} -{{cos({4 x})}} @plus {cos({2 x})}} = 0 :
x={\pi n}
x={{\pi n} @plus {{\frac{1}{2}} \pi}}
//---------------
Kết quả :
x={\pi n}
x={{\pi n} @plus {{\frac{1}{2}} \pi}}
//-------------------------
Tìm nghiệm của các phương trinh:
1,\(\left(sinx+\dfrac{sin3x+cos3x}{1+2sin2x}\right)=\dfrac{3+cos2x}{5}\)
2,\(48-\dfrac{1}{cos^4x}-\dfrac{2}{sin^2x}\left(1+cot2xcotx\right)=0\)
3,\(cos^4x+sin^4x+cos\left(x-\dfrac{\pi}{4}\right)sin\left(3x-\dfrac{\pi}{4}\right)-\dfrac{3}{2}=0\)
4,\(cos5x+cos2x+2sin3xsin2x=0\) trên \(\left[0;2\pi\right]\)
5,\(\dfrac{cos\left(cosx+2sinx\right)+3sinx\left(sinx+\sqrt{2}\right)}{sin2x-1}=1\)
6,\(\left(sinx+\dfrac{sin3x+cos3x}{1+2sin2x}\right)=\dfrac{3+cos2x}{5}\)
7,\(cos\left(2x+\dfrac{\pi}{4}\right)+cos\left(2x-\dfrac{\pi}{4}\right)+4sinx=2+\sqrt{2}\left(1-sinx\right)\)
Bài 1: Tìm nghiệm âm lớn nhất
-2Sin22x + 3Sin2x=0
Bài 2: Tìm số nghiệm của phương trình
Sin(2x + pi/3) = -căn bậc 2 của 3/ 2