\(\dfrac{bz-cy}{a}=\dfrac{cx-az}{b}=\dfrac{ay-bx}{c}\)
\(\Leftrightarrow\dfrac{abz-acy}{a^2}=\dfrac{bcx-caz}{b^2}=\dfrac{cay-cbx}{c^2}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\dfrac{abz-acy}{a^2}=\dfrac{bcx-caz}{b^2}=\dfrac{cay-cbx}{c^2}=\dfrac{abz-acy+bcx-caz+cay-cbx}{a^2+b^2+c^2}=\dfrac{0}{a^2+b^2+c^2}=0\)
Do đó :
\(abz=acy\Leftrightarrow bz=cy\Leftrightarrow\dfrac{z}{c}=\dfrac{y}{b}\left(1\right)\)
\(bcx=baz\Leftrightarrow cx=az\Leftrightarrow\dfrac{x}{a}=\dfrac{z}{c}\left(2\right)\)
Từ \(\left(1\right)+\left(2\right)\Leftrightarrow\dfrac{x}{a}=\dfrac{y}{b}=\dfrac{z}{c}\rightarrowđpcm\)