b) \(\frac{bz-cy}{a}=\frac{cx-az}{b}=\frac{ay-bx}{c}\)
\(=\frac{a\left(bz-cy\right)}{a^2}=\frac{b\left(cx-az\right)}{b^2}=\frac{c\left(ay-bx\right)}{c^2}\)
\(=\frac{abz-acy}{a^2}=\frac{bcx-abz}{b^2}=\frac{acy-bcx}{c^2}\)
\(=\frac{\left(abz-acy\right)+\left(bcx-abz\right)+\left(acy-bcx\right)}{a^2+b^2+c^2}=\frac{0}{a^2+b^2+c^2}=0\)
=> bz - cy = 0 => bz = cy => \(\frac{z}{c}=\frac{b}{y}\) (1)
và cx - az = 0 => cx = az => \(\frac{x}{a}=\frac{z}{c}\) (2)
Từ (1) và (2) => đpcm
a) Sửa lại số thứ 3 là \(\frac{c}{4x-4y+z}\) mới đúng !!!
Theo đề bài suy ra :
\(\frac{2x}{2a+4b+2c}=\frac{y}{2a+b-c}=\frac{z}{4a-4b+c}=\frac{2x+y-z}{9b}\) (tính chất dãy tỉ số bằng nhau)
Tương tự cũng gấp đôi tử và mẫu của 2 phân số còn lại, rồi áp dụng tính chất dãy tỉ số bằng nhau với từng dãy tỉ số ta được :
\(\frac{x}{a+2b}=\frac{y}{2a+b-c}=\frac{z}{4a-4b+c}\)\(\frac{x+2y+z}{9a}\) = \(\frac{4x-4y+z}{9c}\)
Do đó ta có :
\(\frac{2x+y-z}{9b}=\frac{x+2y+z}{9a}=\frac{4x-4y+z}{9c}\) \(\Rightarrow\frac{9b}{2x+y-z}=\frac{9a}{x+2y+z}=\frac{9c}{4x-4y+z}\)
\(\Rightarrow\frac{b}{2x+y+z}=\frac{a}{x+2y+z}=\frac{c}{4x-4y+z}\) (đpcm)
câu b dễ rồi. Quan trọng câu a hơn. Ai giúp hộ cái
chưa kịp giải đã có người giải . 2 người làm hòa rồi :)