nếu \(\frac{x}{a+2b+c}=\frac{y}{2a+b-c}=\frac{z}{4a-4b+c}\)
thì \(\frac{a}{x+2y+z}=\frac{b}{2x+y-z}=\frac{c}{4x-4y+z}\)
Chứng minh rằng nếu \(\frac{x}{a+2b+c}=\frac{y}{2a+b-c}=\frac{z}{4a-4b+c}\) thì \(\frac{a}{x+2y+z}=\frac{b}{2x+y-z}=\frac{c}{4x-4y+z}\)
a) Cho \(\frac{x}{a+2b+c}=\frac{y}{2a+b-c}=\frac{z}{4a-4b+c}\)
CM: \(\frac{a}{x+2y+z}=\frac{b}{2x+y+z}=\frac{c}{4x-4b+c}\)
b) Cho \(\frac{bz-cy}{a}=\frac{cx-az}{b}=\frac{ay-bx}{c}\)
CM: \(\frac{x}{a}=\frac{y}{b}=\frac{z}{c}\)
Chứng minh rằng :\(\dfrac{x}{a+2b+c}=\dfrac{y}{2a+b-c}=\dfrac{z}{4a-4b+c}\) thì \(\dfrac{a}{x+2y+z}=\dfrac{b}{2x+y-z}=\dfrac{c}{4x-4y+z}\).
Cho \(\dfrac{x}{\text{a}+2b+c}=\dfrac{y}{2a+b-c}=\dfrac{z}{4b-4a-c}\)
Chứng minh rằng: \(\dfrac{a}{x+2y-z}=\dfrac{b}{2x+y+z}=\dfrac{c}{4x-4y-z}\)
1/ Tìm x, y biết:
a/ \(\frac{x}{y}=\frac{7}{3}\)và 5x - 2y = 87
b/ \(\frac{x}{19}=\frac{y}{21}và2x-y=34\)
2/ Tìm các số a, b, c biết rằng: 2a = 3b; 5b = 7c và 3a+5c - 7b = 30
3/ Tìm các số x; y; z biết rằng:
a/ \(3x=2y;7y=5z\) và x - y + z =32
b/ \(\frac{2x}{3}=\frac{3y}{4}=\frac{4z}{5}\)và x + y + z =49
c/ \(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}\) và 2x +3y - z =50
4/ Tìm các số x; y; z biết rằng:
a/ \(\frac{x^3}{8}=\frac{y^3}{64}=\frac{z^3}{216}\) và \(x^2+y^2+z^2=14\)
b/ \(\frac{y+z+1}{x}=\frac{x+z+2}{y}=\frac{x+y-3}{z}=\frac{1}{x+y+z}\)
c/ \(\frac{1+2y}{18}=\frac{1+4y}{24}=\frac{1+6y}{6x}\)
d/ \(\frac{2x+1}{5}=\frac{3y-2}{7}=\frac{2x+3y-1}{6x}\)
1/
a/ \(\frac{2x}{3}=\frac{3y}{4}=\frac{4z}{5}\) và x + y + z = 49
b/ \(\frac{y+z+1}{x}=\frac{x+z+2}{y}=\frac{x+y-3}{z}=\frac{1}{x+y+z}\)
c/ \(\frac{1+2y}{18}=\frac{1+4y}{24}=\frac{1+6y}{6x}\)
d/ \(\frac{2x+1}{5}=\frac{3y-2}{7}=\frac{2x+3y-1}{6x}\)
2. Tìm 3 số biết.
a) \(\frac{x}{y}=\frac{y}{8}=\frac{z}{9}\) và x + y + z = 72
b) x : y : z = 5 : 4 : 3 và x +y - z = 18
c) \(\frac{a}{5}=\frac{b}{4}=\frac{c}{7}\) và a + 2b +c = 10
d) \(\frac{a}{3}=\frac{b}{5}=\frac{c}{7}\) và a = 15
e) \(\frac{a}{4}=\frac{b}{5}=\frac{c}{2}\) và a + b = 10
f) \(\frac{a}{2}=\frac{b}{3}=\frac{c}{4}\) và 2a + b - c = -12
g) \(\frac{a}{5}=\frac{b}{6}=\frac{c}{2}\) và 2a + b - 4c = 24
h) \(\frac{a}{2}=\frac{b}{3}=\frac{c}{-7}\) và abc = 366
a/ Cho x,y,z khác 0 thỏa mãn \(\frac{y+z-x}{x}=\frac{z+x-y}{y}=\frac{x+y-z}{z}\)
tính B=\(\left(1+\frac{x}{y}\right)\left(1+\frac{y}{z}\right)\left(1+\frac{z}{x}\right)\)
b/ Cho a,b,c,d khác 0. Tính
\(T=x^{2011}+y^{2011}+z^{2011}+t^{2011}\) biết x,y,z,t thỏa mãn :
\(\frac{x^{2010}+y^{2010}+z^{2010}+t^{2010}}{a^2+b^2+c^2+=d^2}=\frac{x^{2010}}{a^2}+\frac{y^{2010}}{b^2}+\frac{z^{2010}}{c^2}+\frac{t^{2010}}{d^2}\)