Đặt \(a=11x+4\)
\(a^2=\left(11x+4\right)^2=121x^2+88x+16\)
\(=121x^2+88x+11+5\)
\(=11\left(11x^2+8x+1\right)+5\)
\(\Rightarrow a^2\) chia 11 dư 5
Vậy...
a chia 11 dư 4 => a có dạng 11k + 4
$=>a^2=(11k+4)^2=121k^2+88k+16=11(11k^2+8k+1)+5$
$=>a^2$ chia 11 dư 5.
Đặt \(a=11x+4\)
\(a^2=\left(11x+4\right)^2=121x^2-88x+16\)
\(=121x^2+88x+11+5\)
\(=11\left(11x^2+8x+1\right)+5\)
\(=a^2\) chia 11 dư 5
Vậy \(a^2\) chia 11 dư 5