\(n^4-10n^2+9\)
\(=n^4-9n^2-n^2+9\)
\(=\left(n^4-9n^2\right)-\left(n^2-9\right)\)
\(=n^2\left(n^2-9\right)-\left(n^2-9\right)\)
\(=\left(n^2-9\right)\left(n^2-1\right)\)
\(=\left(n-3\right)\left(n+3\right)\left(n-1\right)\left(n+1\right)\)
=n4−9n2−n2+9=n4−9n2−n2+9
=(n4−9n2)−(n2−9)=(n4−9n2)−(n2−9)
=n2(n2−9)−(n2−9)=n2(n2−9)−(n2−9)
= (n2−9)(n2−1)=(n2−9)(n2−1)
= (n−3)(n+3)(n−1)(n+1)