\(x=16\Rightarrow P=\dfrac{\sqrt{16}-2}{\sqrt{16}-3}=\dfrac{4-2}{4-3}=2\)
\(Q=\dfrac{\sqrt{x}\left(\sqrt{x}+3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}-\dfrac{6\sqrt{x}}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}-\dfrac{3\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)
\(=\dfrac{x+3\sqrt{x}-6\sqrt{x}-3\sqrt{x}+9}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}=\dfrac{x-6\sqrt{x}+9}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)
\(=\dfrac{\left(\sqrt{x}-3\right)^2}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}=\dfrac{\sqrt{x}-3}{\sqrt{x}+3}\)
\(A=P.Q=\dfrac{\sqrt{x}-2}{\sqrt{x}-3}.\dfrac{\sqrt{x}-3}{\sqrt{x}+3}=\dfrac{\sqrt{x}-2}{\sqrt{x}+3}=\dfrac{3\sqrt{x}-6}{3\left(\sqrt{x}+3\right)}=\dfrac{5\sqrt{x}-2\left(\sqrt{x}+3\right)}{3\left(\sqrt{x}+3\right)}\)
\(A=\dfrac{5\sqrt{x}}{3\left(\sqrt{x}+3\right)}-\dfrac{2}{3}\)
Do \(\left\{{}\begin{matrix}\sqrt{x}\ge0\\\sqrt{x}+3>0\end{matrix}\right.\) ; \(\forall x\ge0\Rightarrow\dfrac{5\sqrt{x}}{3\left(\sqrt{x}+3\right)}\ge0\)
\(\Rightarrow A\ge-\dfrac{2}{3}\)
\(A_{min}=-\dfrac{2}{3}\) khi \(x=0\)
a: Thay x=16 vào P, ta được:
\(P=\dfrac{4-2}{4-3}=2\)
b: Ta có: \(Q=\dfrac{\sqrt{x}}{\sqrt{x}-3}+\dfrac{6\sqrt{x}}{9-x}-\dfrac{3}{\sqrt{x}+3}\)
\(=\dfrac{x+3\sqrt{x}-6\sqrt{x}-3\sqrt{x}+9}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)
\(=\dfrac{x-6\sqrt{x}+9}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)
\(=\dfrac{\sqrt{x}-3}{\sqrt{x}+3}\)