Ôn tập hệ hai phương trình bậc nhất hai ẩn

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Trần Ngọc Thảo

Cho hệ phương trình

\(\left\{{}\begin{matrix}\left(m-3\right)x+4y=3m\\-mx+5y=4m-1\end{matrix}\right.\)

Tìm giá trị của m để

a) HPT có một nghiệm duy nhất

b) HPT vô nghiệm

Các bạn giải gấp cho mk bài này nha . Mk đang cần rất gấp bạn nào giải đúng mk tick cho

nguyen thi vang
31 tháng 1 2020 lúc 21:55

Bài làm :

\(D=\left|\frac{m-3;4}{-m;5}\right|=5\left(m-3\right)+4m\)

\(D_x=\left|\frac{3m;4}{4m-1;5}\right|=15m-4\left(4m-1\right)\)

\(D_y=\left|\frac{m-3;3m}{-m;4m-1}\right|=\left(m-3\right)\left(4m-1\right)+3m^2\)

a) Hệ có 1 nghiệm duy nhất (x;y)\(\Leftrightarrow D\ne0\)

<=> \(5m-15+4m\ne0\Leftrightarrow m\ne\frac{15}{9}\)

Nghiệm (x;y) là : \(\left\{{}\begin{matrix}x=\frac{15m-16m+4}{5m-15+4m}=\frac{-m+4}{9m-15}\\y=\frac{4m^2-m-12m+3+3m^2}{5m-15+4m}=\frac{7m^2-13m+3}{9m+15}\end{matrix}\right.\)

b) Hệ vô nghiệm <=> D=0 <=> \(m=\frac{15}{9}\)

Ta có : \(\left\{{}\begin{matrix}D=0\\D_x=\frac{7}{3}\\D_y=\frac{7}{9}\end{matrix}\right.\)

Vậy m=15/9 thì hệ vô nghiệm.

Khách vãng lai đã xóa

Các câu hỏi tương tự
Trần Ngọc Thảo
Xem chi tiết
Trần Ngọc Thảo
Xem chi tiết
Trần Ngọc Thảo
Xem chi tiết
Trần Ngọc Thảo
Xem chi tiết
Tuấn Kiên Phạm
Xem chi tiết
Trần Ngọc Thảo
Xem chi tiết
Trần Ngọc Thảo
Xem chi tiết
Trần Ngọc Thảo
Xem chi tiết
Trần Ngọc Thảo
Xem chi tiết