1. Tìm x;y ∈ N* để \(x^4+4y^4\) là số nguyên tố.
2. Cho n ∈ N* CMR: \(n^4+4^n\) là hợp số với mọi n>1.
3. Cho biết p là số nguyên tố thỏa mãn: \(p^3-6\) và \(2p^3+5\) là các số nguyên tố. CMR: \(p^2+10\) cũng là số nguyên tố.
4. Tìm tất cả các số nguyên tố có 3 chữ số sao cho nếu ta thay đổi vị trí bất kì ta vẫn thu được số nguyên tố.
a.viết pt đường thẳng (d) biết đường thẳng (d) đi qua điểm N(2;3) và song song với đường thẳng y=2x-5
b.tìm tọa độ giao điểm của đồ thị hàm số y=x\(^2\) và y=2x+3
c.gọi \(x_1;x_2\) là nghiệm của phương trình x\(^2\)+2x-5=0. tính A=\(\left(x_1-x_2\right)^2+x_1x_2\)
Cho các số thực x, y, z thoả mãn \(2x^2+3y^2+4z^2=5\). Tìm GTLN, GTNN của các biểu thứuc:
a) A= x+y+z
b) B=2x+3y+4z
Cho hệ phương trình: 2X +Y = 3m-2 ( m là tham số ) X - Y = 5 a) Giải hệ phương trình khi m = - 4 ; b) Tìm m để hệ phương trình có nghiệm (x; y) thỏa mãn: x + y = 13.
Giải phương trình:
\(a)\sqrt{x^2+2x+4}\ge x-2\\ b)x=\sqrt{x-\frac{1}{x}}+\sqrt{x+\frac{1}{x}}\\ c)\sqrt{x+2+3\sqrt{2x-5}}+\sqrt{x-2\sqrt{2x-5}}\\ d)x+y+z+4=2\sqrt{x-2}+4\sqrt{y-3}+6\sqrt{z-5}\\ e)\sqrt{x}+\sqrt{y-1}+\sqrt{z-2}=\frac{1}{2}\left(x+y+z\right)\)
Cho số thực x,y thỏa mãn \(\left(x+\sqrt{1+y^2}\right)\left(y+\sqrt{1+x^2}\right)=1\). Tính giá trị của
\(P=x^7+y^7+2x^5+2y^5-3x^3-3y^3+4x+4y+100\)
Tìm các số nguyên dương x và y thỏa mãn: \(\dfrac{2x+2y}{xy+2}\) có giá trị là 1 số nguyên
Cho x,y là 2 số thực bất kì thỏa mãn 2x+3y=5. Tìm GTNN của A=x2+y2