\(x_1+x_2=2m+1;x_2x_1=m^2+1\)
\(x_1+x_2=2m+1;x_2x_1=m^2+1\)
cho phương trình x^2-2(m+1)x+m-3=0 có hai nghiệm x1, x2.
chứng minh rằng biểu thức Q=x1(2017-2016x2)+x2(2017-2018x1) không phụ thuộc vào giá trị của m
cho phương trình bậc hai x2-2(m-1)x+2m-5=0 (1)
với giá trị nào của m thì phương trình có hai nghiệm x1,x2 thỏa mãn:
x1<2<x2
Gọi x1 x2 là nghiệm của phương trình:
\(x^2+1005x+1=0\)
Gọi y1 y2 lag nghiệm của phương trình :
\(y^2+1006+1=0\)
Tính giá trị của biểu thức M= (x1-y1)(x2-y1)(x1+y2)(x2+y2)
Cho phương trình x2 -2.(m-1) x+2m - 5 = 0 (1) với m là tham số.
a) Chứng minh rằng phương trình (1) luôn có hai nghiệm phân biệt x1, x2
b) Tìm các giá trị của m để ( x12 - 2mx1 +2m - 1) (x2 -2 ) \(\le\) 0
cho phương trình x2 - 2(m-1)x - 2m=0
tìm m để x12+x1 - x2 =5 - 2m
Cho phương trình : x2-2(m-5)x-2m +9 =0.
Tìm m để phương trình có hai nghiệm x1,x2 thỏa mãn x12 +2(m-5)x2 =4m2
Bài 2: Cho phương trình x2-2mx+2m-2=0 (1) (m là tham số)
a) Giải phương trình (1) khi m=1
b) Chứng minh phương trình (1) luôn có 2 nghiệm x1,x2. Tìm m để x12 +x22 =12
Định m để phương trình có nghiệm thỏa mán hệ thức đã chỉ ra :
a) x2 +2mx-3m-2=0; 2x1-3x2=1
b)x2-4mx+4m2-m=0; x1=3x2
C)mx2+2mx+m-4=0; 2x1+x2+1=0
d)x2-(3m-1)x+2m3=0; x1=x22
e)x2+92m-8)x+8m3=0 x1=x22
f)x2-4x+m2+3m=0 x12+x2=6
Cho phương trình
X^2 -2(m+1)x +m^2 +m-1 =0 (1) (m là tham số )
Tìm m để (1) có 2 nghiệm phân biệt x1,x2 thỏa mãn hệ thức
+x1^2 .x2^2 - 3x1.x2 =4
+x1/x2 +x2/x1 = 1/3