Ôn tập Tam giác

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Trần Tường Nguyên

gọi O là điểm nằm trong tam giác ABC sao cho góc ABO = góc ACO. vẽ OH vuông góc với AB, ok vuông góc với AC. M là trung điểm của BC. Gọi E, F là trung điểm của OB,OC. Chứng minh

a, Góc OEH = góc OFK

b, MH = MK

Y
27 tháng 5 2019 lúc 15:35

a) \(\left\{{}\begin{matrix}\widehat{OBH}+\widehat{BOH}=90^o\\\widehat{OCK}+\widehat{COK}=90^o\end{matrix}\right.\)

\(\Rightarrow\widehat{BOH}=\widehat{COK}\)

+ ΔBOH vuông tại H, đg trung tuyến HE

=> \(HE=\frac{1}{2}BO\) ( theo tính chất đg trung tuyến trong Δ vuông )

=> HE = BE = OE

=> ΔOHE cân tại E

\(\Rightarrow\widehat{OEH}=180^o-2\cdot\widehat{EOH}\) \(=180^o-2\cdot\widehat{FOK}\)

+ Tương tự ta cm đc :

ΔFOK cân tại F

\(\Rightarrow\widehat{OFK}=180^o-2\cdot\widehat{FOK}\)

\(\Rightarrow\widehat{OEH}=\widehat{OFK}\)

b) + EM là đg trung bình của ΔBOC

\(\Rightarrow\left\{{}\begin{matrix}EM=\frac{1}{2}CO\\EM//OC\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}EM=OF=KF\\\widehat{OEM}+\widehat{EOF}=180^o\end{matrix}\right.\) (1)

+ Tương tự : \(\left\{{}\begin{matrix}FM=OE=EH\\\widehat{OFM}+\widehat{EOF}=180^o\end{matrix}\right.\) (2)

+ Từ (1) và (2) suy ra : \(\left\{{}\begin{matrix}KF=ME\\HE=MF\\\widehat{OEM}=\widehat{OFM}\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}KF=ME\\HE=MF\\\widehat{HEM}=\widehat{KFM}\left(do\widehat{OEH}=\widehat{OFK}\right)\end{matrix}\right.\)

ΔEMH = ΔFKM ( c.g.c )

=> MH = MK

HUYNH NHAT TUONG VY
27 tháng 5 2019 lúc 15:18

Bài 1a :

ˆBOH=ˆKOCBOH^=KOC^

Lại có : HE=EO=BE và KF=FO=OC => 2.ˆKOF=2ˆHOE=>ˆOEH=ˆOFK

Bài 1b :

Do FM và DM là đường trung bình tam giác BOC => DM=OF=KF ; FM=OD=HD

ˆHDO=ˆKFOHDO^=KFO^ ; do FM // OD ; OF // DM => DMFO là hình bình hành

=>ˆODM=ˆOFM=>ˆHDM=ˆKFM=>△HDM=△MFK(c.c.c)=>HM=MKODM^=OFM^=>HDM^=KFM^=>△HDM=△MFK(c.c.c)=>HM=MK


Các câu hỏi tương tự
thangcanbasucvat
Xem chi tiết
Huỳnh Kim Ngân
Xem chi tiết
Vũ Huy Tùng
Xem chi tiết
Nhan Nguyen
Xem chi tiết
MiuLee
Xem chi tiết
Mystery Guy
Xem chi tiết
phạm hoàng minh
Xem chi tiết
Tạ Thị Phương Thùy
Xem chi tiết
NGUYỄN VĂN HỒ
Xem chi tiết