a) ta có AB=AC\(\Rightarrow\Delta ABC\) là tam giác vuông cân tại A
\(\Rightarrow\widehat{ACB}=\widehat{ABC}\) hay \(\widehat{ACK}=\widehat{ABK}\)
Xét \(\Delta AKB\) và \(\Delta AKC\) có
\(AB=AC\) ( giả thiết )
\(\widehat{ABK}=\widehat{ACK}\) (chứng minh trên)
\(KB=KC\) ( Vì K là trung điểm của BC )
\(\Rightarrow\Delta AKB=\Delta AKC\left(c-g-c\right)\)
vậy \(\Delta AKB=\Delta AKC\)
b) ta có \(\Delta AKB=\Delta AKC\) (chứng minh câu a)
\(\Rightarrow\widehat{AKB}=\widehat{AKC}\) (2 góc tương ứng)
mà \(\widehat{AKB}+\widehat{AKC}=180độ\) (2 góc kề bù)
\(\Rightarrow\widehat{AKB}=\widehat{AKC}=\dfrac{180độ}{2}=90độ\)
\(\Rightarrow AK\perp BC\)
vậy \(AK\perp BC\)
c) ta có \(AK\perp BC\) (chứng minh trên)
mà \(EC\perp BC\) ( giả thiết )
\(\Rightarrow EC//AK\)
vậy \(EC//AK\)
d) ta có \(\Delta ABC\) là tam giác vuông cân
\(\Rightarrow\widehat{ACB}=\widehat{ABC}=45độ\)
ta có \(EC\perp BC\Rightarrow\widehat{BCE}=90độ\)
ta có \(\widehat{ACB}+\widehat{ACE}=\widehat{BCE}\)
\(45độ+\widehat{ACE}=90độ\)
\(\widehat{ACE}=90độ-45độ=45độ\)
\(\Rightarrow\widehat{ACE}=\widehat{ACB}=45độ\)
ta có \(\widehat{CAB}+\widehat{CAE}=180độ\) (2 góc kề bù)
\(\Rightarrow90độ+\widehat{CAE}=180độ\)
\(\Rightarrow\widehat{CEA}=180độ-90độ=90độ\)
\(\Rightarrow\widehat{CAE}=\widehat{CAB}=90độ\)
Xét \(\Delta ACE\) và \(\Delta CAB\) có
\(\widehat{ACE}=\widehat{ACB}\) (chứng minh trên)
CA là cạnh chung
\(\widehat{CAE}=\widehat{CAB}\) (chứng minh trên
\(\Rightarrow\Delta ACE=\Delta ACB\left(g-c-g\right)\)
\(\Rightarrow CE=CB\)
vậy \(CE=CB\)