Ôn tập Tam giác

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
vuongducphat

Bài 1. Cho tam giác ABC cân tại A. Gọi I là trung điểm của BCa) Chứng minh AI là tia phân giác góc Ab) Chứng minh AI vuông  BCc) Kẻ IH vuông góc với AB (H thuộc AB), kẻ IK vuông góc với AB (K thuộcAC). Chứng minh IH = IK.d) Trên tia đối của tia IA lấy điểm D sao cho IA = ID. Chứng minh AB // CD

Nguyễn Lê Phước Thịnh
31 tháng 1 2021 lúc 10:57

a) Xét ΔABI và ΔACI có 

AB=AC(ΔABC cân tại A)

AI chung

BI=CI(I là trung điểm của BC)

Do đó: ΔABI=ΔACI(c-c-c)

nên \(\widehat{BAI}=\widehat{CAI}\)(hai góc tương ứng)

mà tia AI nằm giữa hai tia AB,AC

nên AI là tia phân giác của \(\widehat{BAC}\)(đpcm)

b) Ta có: AB=AC(ΔABC cân tại A)

nên A nằm trên đường trung trực của BC(tính chất đường trung trực của một đoạn thẳng)(1)

Ta có: IB=IC(I là trung điểm của BC)

nên I nằm trên đường trung trực của BC(Tính chất đường trung trực của một đoạn thẳng)(2)

Từ (1) và (2) suy ra AI là đường trung trực của BC

hay AI\(\perp\)BC(đpcm)

c) Xét ΔIHB vuông tại H và ΔIKC vuông tại K có 

IB=IC(I là trung điểm của BC)

\(\widehat{HBI}=\widehat{KCI}\)(hai góc ở đáy của ΔABC cân tại A)

Do đó: ΔIHB=ΔIKC(cạnh huyền-góc nhọn)

nên IH=IK(hai cạnh tương ứng)

d) Xét ΔABI vuông tại I và ΔDCI vuông tại I có

IB=IC(I là trung điểm của BC)

IA=ID(gt)

Do đó: ΔABI=ΔDCI(hai cạnh góc vuông)

nên \(\widehat{ABI}=\widehat{DCI}\)(hai góc tương ứng)

mà \(\widehat{ABI}\) và \(\widehat{DCI}\) là hai góc ở vị trí so le trong

nên AB//CD(Dấu hiệu nhận biết hai đường thẳng song song)


Các câu hỏi tương tự
Becky
Xem chi tiết
Bùi Thị Ánh Tuyết
Xem chi tiết
Linh Lê
Xem chi tiết
Huyền Nguyễn
Xem chi tiết
Phù Minh Huyền
Xem chi tiết
Minh Thư
Xem chi tiết
Tuấn Vũ Trần Lê
Xem chi tiết
Tuấn Vũ Trần Lê
Xem chi tiết
Thanh Do
Xem chi tiết