Cho tam giác ABC có 3 góc nhọn (AB < AC). Trên cạnh AC lấy điểm M sao cho AB = AM. Gọi AD là tia phân giác của (D thuộc BC).
a) Chứng minh: .
b) Chứng minh rằng: góc DBA = góc DMA.
c) Từ D kẻ DI vuông góc với AB, DK vuông góc với AC (I thuộc AB, K thuộc AC). Chứng minh: BI = KM.
d) Trên tia đối của tia AB lấy điểm P sao cho A là trung điểm PI. Chứng minh: AD//PK. giúp mik với mik cần gấp
a) Chứng minh: tam giác ABD = tam giác AMD nhed
a: Xét ΔABD và ΔAMD có
AB=AM
\(\widehat{BAD}=\widehat{MAD}\)
AD chung
Do đó: ΔABD=ΔAMD
b: Ta có: ΔABD=ΔAMD
nên \(\widehat{ABD}=\widehat{AMD}\)
c: Xét ΔAID vuông tại I và ΔAKD vuông tại K có
AD chung
\(\widehat{IAD}=\widehat{KAD}\)
Do đó: ΔAID=ΔAKD
Suy ra: AI=AK
=>BI=KM