cho điểm E thuộc cạnh AC của tam giác ABC. QUA B kẻ 1 đường thẳng I. Đường thẳng qua E và song song với BC cắt I tại N. Đường thẳng qua E và song song với AB cắt I tại M. Chứng minh AN//CM
Cho tam giác ABC, AD là đường trung tuyến. Gọi M là điểm tùy ý thuộc khoảng BD. Lấy E thuộc AB và F thuộc AC sao cho ME//AC; MF//AB . Gọi H là giao điểm MF và AD. Đường thẳng qua B song song với EH cắt MF tại K. Đường thẳng AK cắt BC tại I. Tính tỉ số IB/ID
cho tam ABC lấy điểm D trên cạnh AB.Qua B kẻ đường thẳng song song với bc cắt AC tại E. a, Biết AD=3cm AB=5cm BC=10cm.Tính de b, Qua C kẻ đường thẳng song song với AB cắt tia DE tại G. CM: DA.EG=DB.DE
Cho tam giác ABC vuông tại A ( AB < AC ) . Kẻ AH vuông góc với BC tại H. Qua B kẻ đường thẳng vuông góc với AB , cắt đường thẳng AH tại D. Gọi tia AB và tia CD cắt nhau tại E. BE DE a ) Chứng minh : BA DC b ) Qua E kẻ đường thẳng song song với AC , đường thẳng này lần lượt cắt các đường thăng AD , BC tại I , K. Chứng minh : El = EK ; c ) Gọi N là giao điểm của EH và AC ; Gọi Q là giao điểm của DN và BC ; Gọi P là giao điểm của BN và AD . Chúng minh : NA = NC và PQ // BD ; d ) Gọi G là giao điểm của đường thẳng AQ và CD . Qua Q kẻ đường thẳng song song với CE , cắt đường thẳng AC tại T. Chứng minh PT LAD
Bài 1: Cho tam giác ABC. Trên cạnh BC lấy điểm D sao cho DB/DC = 1/2. Đường thẳng qua D song song với AB cắt AC tại E; Đường thẳng qua D song song AC cắt AB tại Fa) So sánh các tỉ số AF/AB; AE/AC.
b) Gọi M là trung điểm của AC. CMR: EF// BM.
6*. Cho tam giác ABC có AM là trung tuyến và điểm E thuộc đoạn thẳng MC. Qua E kẻ đường thẳng song song với
AC, cắt AB ở D và cắt AM ở K. Qua E kẻ đường thẳng song song với AB, cắt AC ở F. Chứng minh CF=DK.
7*. Cho tam giác ABC nhọn, M là trung điểm của BC và H là trực tâm. Đường thẳng qua H và vuông góc với MH cắt
AB và AC theo thứ tự ở I và K. Qua C kẻ đường thẳng song song với IK, cắt AH và AB theo thứ tự ở N và D. Chứng
minh:
a) NC=ND . b) HI=HK
8*. Cho hình bình hành ABCD. Gọi E là một điểm bất kỳ trên cạnh AB. Qua E kẻ đường thẳng song song với AC cắt
BC ở F và kẻ đường thẳng song song với BD cắt AD ở H. Đường thẳng kẻ qua F song song với BD cắt CD ở G. Chứng
minh AH.CD=AD.CG.
Cho tam giác ABC, đường thẳng song song với BC cắt cạnh AB, AC lần lượt tại D, E. Vẽ đường thẳng a qua A và song song với BC. Đường thẳng a cắt đường thẳng BE và CD lần lượt tại G và K
CM: A là trung điểm của của KL
Qua một điểm O tùy ý ở trong tam giác ABC kẻ đường thẳng song song với AB, cắt AC và BC tại D và E , đường thẳng song song với AC cắt AB và BC tại F và K , đường thẳng song song với BC cắt AB và AC tại M và N . CM:
AF: AB + BE: BC+CN:CA= 1
Câu 5: Cho tứ giác ABCD. Đường thẳng qua A và song song với BC cắt BD tại E. Đường thẳng qua B và song song với AD cắt AC ở F. Chứng minh EF //DC.
Câu 6: Cho hình thang ABCD có AB là đáy nhỏ, gọi O là giao điểm của hai đường chéo. Qua O kẻ đường thẳng song song với AB, cắt AD và BC theo thứ tự tị M, N. Chứng minh rằng OM = ON.