Câu 1:
a) 2x2(3x2 - xy - \(\frac{3}{2}\)y2)
= 6x4 - 2x3y - 3x2y2
b) (16x4y3 - 20x2y3 - 4x4y4) : (4x2y2)
= 4x2y - 5y - x2y2 = - x2y2 + 4x2y - 5y
Câu 2:
a) 5x(3 - 2x) - 7(2x - 3)
= 5x(3 - 2x) + 7(3 - 2x)
= (3 - 2x)(5x + 7)
b) x3 - 4x2 + 4x
= x(x2 - 4x + 4)
= x(x - 2)2
c) x2 + 5x + 6
= x2 + 2x + 3x + 6
= x(x + 2) + 3(x + 2)
= (x + 2)(x + 3)
Câu 1 :
a ) \(2x^2\left(3x^2-xy-\dfrac{3}{2}y^2\right)\)
\(=6x^4-2x^3y-3x^2y^2\)
b ) \(\left(16x^4y^3-20x^2y^3-4x^4y^4\right):4x^2y^2\)
\(=4x^2y-5y-x^2y^2\)
Câu 2 :
a ) \(5x\left(3-2x\right)-7\left(2x-3\right)\)
\(=5x\left(3-2x\right)+7\left(3-2x\right)\)
\(=\left(3-2x\right)\left(5x+7\right)\)
b ) \(x^3-4x^2+4x\)
\(=x\left(x^2-4x+4\right)\)
\(=x\left(x-2\right)^2\)
c ) \(x^2+5x+6\)
\(=x^2+2x+3x+6\)
\(=x\left(x+2\right)+3\left(x+2\right)\)
\(=\left(x+2\right)\left(x+3\right)\)
2 bài còn lại bạn chụp lại nha nhìn vậy chẹo cổ mất :))
Câu 3:
a) M = (4x + 3)2 - 2x(x + 6) - 5(x - 2)(x + 2)
= 16x2 + 24x + 9 - 2x2 - 12x - 5(x2 - 4)
= 14x2 + 12x + 9 - 5x2 + 20
= 9x2 + 12x + 29
= 9x2 + 12x + 4 + 25
= (3x + 2)2 + 25
b) M = (3x + 2)2 + 25 tại x = - 2
= \(\left [ 3\times (- 2) + 2 \right ]\)2 + 25
= 16 + 25 = 41
c) Ta có: M = (3x + 2)2 + 25 > 0, với mọi x
Vì: \(\left\{\begin{matrix} (3x + 2)^{2} \geq 0 & & \\ 25 > 0 & & \end{matrix}\right.\) (với mọi x)
Vậy (3x + 2)2 + 25 > 0 với mọi x