a: \(=x^6+27-x^6-9x^4-27x^2-27\)
\(=-9x^4-27x^2\)
b: \(=\left(x^2-1\right)^3-x^6+1\)
\(=x^6-3x^4+3x^2-1-x^6+1\)
\(=-3x^4+3x^2\)
c: \(=5\left(x^2-4\right)-\left(16x^2-24x+9\right)+17\)
\(=5x^2-20-16x^2+24x-9+17\)
\(=-11x^2+24x-12\)
a: \(=x^6+27-x^6-9x^4-27x^2-27\)
\(=-9x^4-27x^2\)
b: \(=\left(x^2-1\right)^3-x^6+1\)
\(=x^6-3x^4+3x^2-1-x^6+1\)
\(=-3x^4+3x^2\)
c: \(=5\left(x^2-4\right)-\left(16x^2-24x+9\right)+17\)
\(=5x^2-20-16x^2+24x-9+17\)
\(=-11x^2+24x-12\)
Tìm x:
\(1,\left(3x-5\right)^2-\left(3x+1\right)^2=8\)
2,\(2x.\left(8x-3\right)-\left(4x-3\right)^2=27\)
3,\(\left(2x-3\right)^2-\left(2x+1\right)^2=3\)
4, \(\left(x+5\right)^2-x^2=45\)
5, \(\left(x-3\right)^3-\left(x-3\right).\left(x^2+3x+9\right)+9.\left(x+1\right)^2=18\)
6,\(x.\left(x-4\right).\left(x+4\right)-\left(x-5\right).\left(x^2+5x+25\right)=13\)
Tìm x:
a/ \(\left(6x-2\right)^2+\left(5x-2\right)^2-4\left(3x-1\right)\left(5x-2\right)=0\)
b/ \(\left(x-1\right)\left(x^2+x+1\right)-x\left(x+2\right)\left(x-2\right)=5\)
c/ \(\left(x-1\right)^3-\left(x+3\right)\left(x^2-3x+9\right)+3\left(x^2-4\right)=2\)
Rút gọn rồi tính giá trị biểu thức :
a) \(A=\left(x+3\right)^2+\left(x-3\right).\left(x+3\right)-2.\left(x+2\right).\left(x-4\right)\); với x = \(-\frac{1}{2}\)
b) \(B=\left(3x+4\right)^2-\left(x-4\right).\left(x+4\right)-10x\); với x = \(-\frac{1}{10}\)
c) \(C=\left(x+1\right)^2-\left(2x-1\right)^2+3.\left(x-2\right).\left(x+2\right)\); với x = 1
d) \(D=\left(x-3\right).\left(x+3\right)+\left(x-2\right)^2-2x.\left(x-4\right)\); với x = -1
Dùng hằng đẳng thức để triển khai và thu gọn:
a) \(x\left(x-1\right).\left(x+1\right)-\left(x+1\right)\left(x^2-x+1\right)\)
b) \(\left(x-1\right)^3-\left(x+2\right).\left(x^2-2x+4\right)+3.\left(x+4\right).\left(x-4\right)\)
c) \(3x^2.\left(x+1\right).\left(x-1\right)+\left(x^2-1\right)^3-\left(x^2-1\right).\left(x^4+x^2+1\right)\)
Rút gọn biểu thức:
a) \(A=\left(x-y\right)^3+\left(y+x\right)^3+\left(y-x\right)^3-3xy\left(x+y\right)\)
b) \(B=3x^2\left(x+1\right)\left(x-1\right)-\left(x^2-1\right)\left(x^4+x^2+1\right)+\left(x^2-1\right)^3\)
c) \(C=\left(x+y\right)\left(x^2-xy+y^2\right)+\left(x-y\right)\left(x^2+xy+y^2\right)-2x^3\)
d) \(D=\left(x+1\right)^3+\left(x-1\right)^3+x^3-3x\left(x+1\right)\left(x-1\right)\)
Tính
a/ \(\left(x-3\right)\left(x^2+3x+9\right)\)
b/ \(\left(x-2\right)\left(x^2+2x+4\right)\)
c/ \(\left(x+4\right)\left(x^2-4x+16\right)\)
d/ \(\left(x-3y\right)\left(x^2+3xy+9y^2\right)\)
e/ \(\left(x^2-\frac{1}{3}\right)\left(x^4+\frac{1}{3}x^2+\frac{1}{9}\right)\)
f/ \(\left(\frac{1}{3}x+2y\right)\left(\frac{1}{9}x^2-\frac{2}{3}xy+4y^2\right)\)
1) \(27+\left(x-3\right).\left(x^2+3x+9\right)=-x\)
2) \(-4\left(x+2\right)-7\left(2x-1\right)+9\left(4-3x\right)=30\)
3) \(x^2-4x+4=0\)
4) \(\left(x-1\right).\left(x^2+x+1\right)-x.\left(x+2\right).\left(x-2\right)=5\)
Tìm x giúp mk vs nha mai mk đi hk rùi
1) Tìm x biết,
\(4\left(x+1\right)^2+\left(2x-1\right)^2-8\left(x-1\right)\left(x+1\right)=11\)
2) Rút gọn các biểu thức
a) \(2x\left(2x-1\right)^2-3x\left(x+3\right)\left(x-3\right)-4x\left(x+1\right)^2\)
b) \(\left(a-b+c\right)^2-\left(b-c\right)^2+2ab-2ac\)
c) \(\left(3x+1\right)^2-2\left(3x+1\right)\left(3x+5\right)+\left(3x+5\right)^2\)
d) \(\left(3+1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\left(3^{32}+1\right)\)
e) \(\left(a+b-c\right)^2+\left(a-b+c\right)^2-2\left(b-c\right)^2\)
3) Chứng minh rằng các biểu thức sau luôn luôn có giá trị dương với mọi giá trị của biến
a) \(9x^2-6x+2\)
b) \(x^2+x+1\)
c) \(2x^2+2x+1\)
4) Tìm GTNN của các biểu thức
a) A=\(x^2-3x+5\)
b) B=\(\left(2x-1\right)^2+\left(x+2\right)^2\)
GIÚP MK VỚI!!!!!!!!!!
Bài 3: Tìm x biết:
1, \(4x^2-36=0\)
2, \(\left(x-1\right)^2+x\left(4-x\right)=11\)
3, \(\left(x-5\right)^2-x.\left(x+2\right)=5\)
4, \(x\left(x+4\right)-x^2-6x=10\)