\(a)\left(2x+1\right)^2=25\)
\(\Rightarrow\left(2x+1\right)^2=\left(\pm5\right)^2\)
\(\Rightarrow\left[{}\begin{matrix}2x+1=5\\2x+1=-5\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}2x=4\\2x=-5\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=2\\x=-3\end{matrix}\right.\)
Vậy \(\left[{}\begin{matrix}x=2\\x=-3\end{matrix}\right.\)
\(\left(2x-3\right)^2=36\)
\(\Rightarrow\left(2x-3\right)^2=\left(\pm6\right)^2\)
\(\Rightarrow\left[{}\begin{matrix}2x-3=6\\2x-3=-6\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}2x=9\\2x=-3\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\frac{9}{2}\\x=-\frac{3}{2}\end{matrix}\right.\)
Vậy \(\left[{}\begin{matrix}x=\frac{9}{2}\\x=-\frac{3}{2}\end{matrix}\right.\)
\(b)5^x+2=625\)
\(\Rightarrow5^x=623\)
\(\Rightarrow x\in\varnothing\)
Vậy \(x\in\varnothing\)
\(\left(2x-1\right)^3=-8\)
\(\Rightarrow\left(2x-1\right)^3=\left(-2\right)^3\)
\(\Rightarrow2x-1=-2\)
\(\Rightarrow2x=-1\)
\(\Rightarrow x=-\frac{1}{2}\)
\(c)\left(x-3\right)^2+\left(15x-45\right)^4=0\)
- Có \(\left\{{}\begin{matrix}\left(x-3\right)^2\ge0,\forall x\\\left(15x-45\right)^4\ge0,\forall x\end{matrix}\right.\Rightarrow\left(x-3\right)^2+\left(15x-45\right)^4\ge0,\forall x\)
Suy ra: Để \(\left(x-3\right)^2+\left(15x-45\right)^4=0\) thì \(\left\{{}\begin{matrix}\left(x-3\right)^2=0\\\left(15x-45\right)^4=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x-3=0\\15x-45=0\end{matrix}\right.\Rightarrow x=3\)
\(\left|x-3\right|+\left(x^2-3x\right)^2=0\)
- Có \(\left\{{}\begin{matrix}\left|x-3\right|\ge0,\forall x\\\left(x^2-3x\right)^2\ge0,\forall x\end{matrix}\right.\Rightarrow\left|x-3\right|+\left(x^2-3x\right)^2\ge0,\forall x\)
Suy ra: Để \(\left|x-3\right|+\left(x^2-3x\right)^2=0\)thì \(\left\{{}\begin{matrix}\left|x-3\right|=0\\\left(x^2-3x\right)^2=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x-3=0\\x^2-3x=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=3\\x\left(x-3\right)=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=3\\\left[{}\begin{matrix}x=0\\x=3\end{matrix}\right.\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x=3\end{matrix}\right.\)