Cho tam giác ABC vuông tại A (AB < AC). Đường tròn (O) đường kính AC cắt BC tại H.
a) Chứng minh AHv góc với BC tính độ dài ah nếu cho biết AB = 12 cm AC = 16 cm
b) Gọi M là trung điểm của AB. Chứng minh HM là tiếp tuyến của (O)
Giúp mình với mốt là mình đi thi rồi
Cho (O,R) trên (O,R) lấy hai điểm A và H sao cho AH<R. Gọi a là tiếp tuyến tại H của (O) . Trên a lấy hai điểm B và C sao cho H nằm giữa B,C và AB=AC=R Từ H lần lượt vẽ HM vuông góc với OB (M thuộc OB ) và HN vuông góc OC (N thuộc OC )
1) CM rằng MN là trung trực OA
2) Chứng minh OB.OC=2R2
3) Tìm giá trị lớn lớn nhất của diện tích tam giác OMN khi H thay đổi
( Hướng dẫn : Gọi S là điểm thuộc cung nhỏ HI. Kẻ tiếp tuyến tại S của (O) cắt BH, BI lần lượt tại R và T )
Cho tam giác ABC vuông tại A đường cao AH biết AB = 6 cm BC = 10 cm a) Tính độ dài đường cao AH và số đo B^ của tam giác ABC b) tính diện tích tam giác AHB
Cho tam giác ABC vuông tại A, đường cao AH. Cho AB = 9 cm, AC = 12cm
a, Tính AH, HB
b, Tinh góc C và góc CAH
c, Vẽ HM vuông goc AB tại M, HN vuông góc AC tại N. Gọi K là trung điểm của BC. Chứng minh AK \(\perp\) MN
1. cho tam giác ABC vuông tại A, đường cao AH , đường trung tuyến AM
biết AB= 6cm , AC= 8cm.
a, Tính BC,CH,AH
b, Tính HM,AM,và diện tích AHM
c, kẻ HD vuông AB (D thuộc AB), HE vuông AC (E thuộc AC)
c/m : AD.AB=AE.AC
Cho tam giác ABC vuông tại A(AB<AC), đường cao AH. Lấy điểm M trên đoạn HC sao cho HM=AM. Qua M vẽ 1 đường thẳng vuông góc với BC, cắt AC tại D. Từ D kẻ đường thẳng song song với BC cắt AH tại K
a)Chứng minh AK=BH
b)chứng minh 1/AH^2=1/AD^2+1/AC^2
Mọi người giải giúp em vớii, em cảm ơnn
Bài 5 : (3 điểm ) Cho tam giác ABC vuông tại A có AC = 12 cm và BC = 13 cm Đường cao AH b/Kẻ HD vuông góc với AB tại D , kẻ HE vuông góc với AC tại E . Chứng minh : HB.HC=DA.DB+EA.EC
Cho tam giác ABC vuông tại A có đường cao AH, biết CH = 9 cm và BH = 4 cm. Gọi D là điểm đối xứng của A qua BC và E là giao điểm của hai tia CA, DB. Qua E kẻ đường thẳng vuông góc với BC cắt đường thẳng BC tại F, cắt đường thẳng AB tại G. Qua C kẻ đường thẳng song song với AG cắt đường thẳng AD tại K. a) Tính độ dài đường cao AH, cạnh AB của tam giác ABC b) Chứng minh AC bình = CH.HB+ AH.HK c) Chứng minh rằng FA là tiếp tuyến của đường tròn đường kính BC
Cho tam giác ABC nhọn, đường cao AH .Vẽ HM,HN lần lượt vuông góc với AB,AC
a)C/m AM.AB=AN.AC
B)\(\frac{AM}{BN}=\frac{AH^2}{BH^2}\)