Chương 4: BẤT ĐẲNG THỨC, BẤT PHƯƠNG TRÌNH

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Nguyễn Minh Hằng

Giải và biện luận bất phương trình sau 

\(\left(m-1\right)x^2-2mx+3m-2>0\)

Nguyễn Trọng Nghĩa
25 tháng 2 2016 lúc 10:05

\(\left(m-1\right)x^2-2mx+3m-2>0\) (1)

- Nếu \(m=1\)   thì (1) có dạng \(-2x+1>0\)    nên có nghiệm \(x<\frac{1}{2}\)

- Nếu \(m\ne1\)   thì (1) là bất phương trình bậc 2 với \(a=m-1\)  và biệt thức \(\Delta'=-2m+5m-2\) 

Trong trường hợp \(\Delta'\ge0\)

ta kí hiệu 

\(x_1:=\frac{m-\sqrt{\Delta'}}{m-1}\)    ; \(x_2:=\frac{m+\sqrt{\Delta'}}{m-1}\)     \(d:=x_2-x_1=\frac{2\sqrt{\Delta'}}{m-1}\)

Lập bảng xét dấu ta được

+ Nếu \(m\le\frac{1}{2}\)   thì \(a<0\)    ; \(\Delta'\le0\)

nên (1) vô nghiệm

+ Nếu \(\frac{1}{2}\) <m< 1 thi a<0; \(\Delta'>0\)

\(d\ge0\) nên (1) \(\Leftrightarrow\) x<\(x_1\)  hoặc \(x_2\)<x

+ Nếu m>2 thì a>0; \(\Delta'<0\)

nên (1) có tập nghiệm T(1)=R.

Ta có kết luận :

* Khi \(m\le\frac{1}{2}\) thì (1) vô nghiệm

* Khi \(\frac{1}{2}\) <m<1 thì (1) có nghiệm

\(\frac{m+\sqrt{-2m^2+5m-2}}{m-1}\) <x<\(\frac{m-\sqrt{-2m^2+5m-2}}{m-1}\)

* Khi m=1 thì (1) có nghiệm \(x<\frac{1}{2}\)

* Khi 1<m\(\le\) 2 thì (1) có tập nghiệm

T(1) = \(\left(-\infty;\frac{m-\sqrt{-2m^2+5m-2}}{m-1}\right)\cup\left(\frac{m+\sqrt{-2m^2+5m-2}}{m-1}\right);+\infty\)

* Khi m>2 thì (1) có nghiệm là mọi x\(\in R\)


Các câu hỏi tương tự
Nguyễn Thái Bình
Xem chi tiết
Guyo
Xem chi tiết
Nguyễn Thái Bình
Xem chi tiết
Quỳnh Nguyễn Thị Ngọc
Xem chi tiết
Ngô Thành Chung
Xem chi tiết
vũ manh dũng
Xem chi tiết
Emilia Nguyen
Xem chi tiết
Rimuru Tempest
Xem chi tiết
Bình Trần Thị
Xem chi tiết