\(x^2+2mx+m^2+2\left|x+m\right|+1< -2m^2+3m\)
\(\Leftrightarrow\left(x+m\right)^2+2\left|x+m\right|+1< -2m^2+3m\)
\(\Leftrightarrow\left(\left|x+m\right|+1\right)^2< -2m^2+3m\)
Do \(\left|x+m\right|\ge0\Rightarrow\left(\left|x+m\right|+1\right)^2\ge1\)
\(\Rightarrow-2m^2+3m>1\Rightarrow-2m^2+3m-1>0\)
\(\Rightarrow\frac{1}{2}< m< 1\)