Đặt \(x\sqrt{2x^2+4}=t\Rightarrow x^2\left(x^2+2\right)=\frac{t^2}{2}\)
Pt trở thành:
\(\frac{t^2}{2}=12-t\)
\(\Leftrightarrow t^2+2t-24=0\Leftrightarrow...\)
Đặt \(x\sqrt{2x^2+4}=t\Rightarrow x^2\left(x^2+2\right)=\frac{t^2}{2}\)
Pt trở thành:
\(\frac{t^2}{2}=12-t\)
\(\Leftrightarrow t^2+2t-24=0\Leftrightarrow...\)
Cho phương trình x2+4(m-1)x-12=0. Tìm m sao cho 4|x1-2|\(\sqrt{4-mx_2}\)=(x1+x2-x1x2-8)2
Cho phương trình ẩn x: x2 – 2mx + 4 = 0 (1)
a) Giải phương trình đã cho khi m = 3.
b) Tìm giá trị của m để phương trình (1) có hai nghiệm x1, x2 thỏa mãn: ( x1 + 1 )2 + ( x2 + 1 )2 = 2.
cho phương trình ẩn x: x^2 -2x -m+2=0(m là tham số)
a Tìm m để phương trình đã cho có 2 nghiệm phân biệt.
b.Tìm m để 2 nghiệm x1, x2 thoả mãn : x1^2 -x2^2= 8
Cho phương trình ẩn x: x2 – x + 1 + m = 0 (1)
a) Giải phương trình đã cho với m = 0.
b) Tìm các giá trị của m để phương trình (1) có hai nghiệm x1, x2 thỏa mãn: x1x2.( x1x2 – 2 ) = 3( x1 + x2 ).
Cho phương trình x2 – 2(k + 2)x + k2 + 2k – 7 = 0 (m là tham số)
a) Giải phương trình khi k = - 3
b) Tìm k để phương trình có nghiệm x1; x2 thỏa mãn \(x_1^2+x_2^2=x_1x_2+28\)
giải bất phương trình \(\left(\sqrt{13}-\sqrt{2x^2-2x+5}-\sqrt{2x^2-4x+4}\right)\left(x^6-x^3+x^2-x+1\right)\ge0\)
giải phương trình: \(2x^3-4\sqrt{2}x^2+12x-8\sqrt{2}=0\)
Giải phương trình: \(\sqrt{x^2+x+19}+\sqrt{7x^2-2x+4}+\sqrt{13x^2+19x+7}=\sqrt{3}.\left(x+5\right)\)
1. cho phương trình :x2+5x+m-2=0( m là tham số)
a, giải phương trình khi m=-12
b, tìm m để phương trình có hai nghiệm phân biệt x1,x2 thỏa mãn \(\dfrac{x}{x_1-1}+\dfrac{1}{x_2-1}=2\)
cho phương trình : x^2 - mx + m - 1 = 0
Tìm m để phương trình có 2 nghiệm phân biệt x1, x2 thỏa mãn |x1| + |x2| = 4