\(\sqrt{2\left(x^2-4x+4\right)+4}+\sqrt{3\left(x^2-4x+4\right)+1}\)
\(\sqrt{2\left(x-2\right)^2+4}+\sqrt{3\left(x-2\right)^2+1}\ge2+1\) =3
dấu = khi x=2
vậy ptcos nghiệm duy nhất x=2
\(\sqrt{2\left(x^2-4x+4\right)+4}+\sqrt{3\left(x^2-4x+4\right)+1}\)
\(\sqrt{2\left(x-2\right)^2+4}+\sqrt{3\left(x-2\right)^2+1}\ge2+1\) =3
dấu = khi x=2
vậy ptcos nghiệm duy nhất x=2
Giải phương tình:
a) \(x^2-7x+\sqrt{x^2-7x+8}=12
\)
b)\(\sqrt{3x^2+12x+16}+\sqrt{y^2-4y+13}=5\)
c)\(\sqrt{x-3}+\sqrt{5-x}=x^2-8x+18\)
giải các phương trình sau
a. \(2\sqrt{12x}-3\sqrt{3x}+4\sqrt{48x}=17\)
b. \(\sqrt{x^2-6x+9}=1\)
giải phương trình: \(2x^3-4\sqrt{2}x^2+12x-8\sqrt{2}=0\)
Giải PT:
a) x2+y2+\(\frac{1}{x^2}\)+\(\frac{1}{y^2}\)=4
b) \(\sqrt{3x^2+12x+13}+\sqrt{2x^2+8x+17}=4\)
Giải phương trình:
\(\sqrt[3]{3x^2-2x+2017}-\sqrt[3]{3x^2-8x+2018}-\sqrt[3]{6x-2019}=\sqrt[3]{2018}\)
giải phương trình sau \(2x^3-2x+\sqrt{2x^3-3x+1}=3x+1+\sqrt[3]{x^2+2}\)
Giải phương trình
1, \(x^2+\left(3-\sqrt{x^2+2}\right)x=1+2\sqrt{x^2+2}\)
2, \(10x^2+3x+1=\sqrt{x^2+3}\left(1+6x\right)\)
3, \(\sqrt{2x-3}+\sqrt{5-2x}=3x^2-12x+14\)
4, \(x^2+2x+15=6\sqrt{4x+5}\)
5, \(\sqrt{2x^2+5x+12}-x=5-\sqrt{2x^2+3x+2}\)
giải các phương trình sau :
a ) \(7\sqrt{4x^2+5x-1}-14\sqrt{x^2-3x+3}=17x-13\)
b ) \(\sqrt{2x^2+5x+12}+\sqrt{2x^2+3x+2}=x+5\)
\(\sqrt{2x^2+8x+5}+\sqrt{2x^2-4x+5}=6\sqrt{x}\)
Giải phương trình
Giúp với mai thi rồi