giải phương trình:
\(\frac{\cos x\left(\cos x+2\sin x\right)+3\sin x\left(\sin x+\sqrt{2}\right)}{2\sin x-1}=1\)
Rút gọn:
C= \(sin^2\dfrac{\pi}{3}+sin^2\dfrac{5\pi}{6}+sin^2\dfrac{\pi}{9}+sin^2\dfrac{11\pi}{18}+sin^2\dfrac{13\pi}{18}+sin^2\dfrac{2\pi}{9}\)
D=\(cos\left(x-\dfrac{\pi}{3}\right).cos\left(x+\dfrac{\pi}{4}\right)+cos\left(x+\dfrac{\pi}{6}\right).cos\left(x+\dfrac{3\pi}{4}\right)\)
Thu gọn biểu thức:
\(X=5.\cos\left(-x\right)-2.\cos\left(5\pi+x\right)+\tan\left(\dfrac{7\pi}{2}-x\right)+7\sin\left(\dfrac{11\pi}{2}-x\right)\)
Biến đổi thành tích các biểu thức sau:
A = \(cos (x-30°) - cos (x - 60°)\)
B = \(1+cos x + cos 2x\)
C = \(4 cos^2x - 1\)
D = \(\sqrt{3} sin x - cos x\)
E = \(sin a + sin 2a + sin 3a + sin 4a\)
F = \(sin 70° + sin 50° - sin 20°\)
G = \(cos (60° + x) + cos (60° - x) + cos 3x\)
H = \(cos x + cos 2 x + cos 3 x\)
Chứng minh rằng: (Pls help me)
a, \(\frac{1}{\sin x}+\cot x=\cot\frac{x}{2}\)
b, \(\frac{1-\cos x}{\sin x}=\tan\frac{x}{2}\)
c,\(\tan\frac{x}{2}\left(\frac{1}{\cos x}+1\right)=\tan x\)
d,\(\frac{\sin2a}{2\cos a\left(1+\cos a\right)}=\tan\frac{a}{2}\)
e,\(\cot x+\tan\frac{x}{2}=\frac{1}{\sin x}\)
f,\(3-4\cos2x+\cos4x=8\sin^4x\)
g,\(\frac{1-\cos x}{\sin x}=\frac{\sin x}{1+\cos x}\)
h,\(\sin x+\cos x=\sqrt{2}\sin\left(x+\frac{\pi}{4}\right)\)
i,\(\sin x-\cos x=\sqrt{2}\sin\left(x-\frac{\pi}{4}\right)\)
l,\(\cos x-\sin x=\sqrt{2}\cos\left(x+\frac{\pi}{4}\right)\)
Cm đẳng thức ko phụ thuộc biến
\(\frac{\cos^3x+\sin^3x}{1-\sin x.\cos x}-\sin x+\cos x\)
Tính \(\frac{\sin^2x}{\sin x-\cos x}-\frac{\sin x+\cos x}{\tan^2x-1}\)
chứng minh các đẳng thức sau
a) \(\tan^2x-\sin^2x=\tan^2x.\sin^2x\)
b) \(\tan x+\cot x=\frac{1}{\sin x.\cot x}\)
c) \(\frac{1-\cos x}{\sin x}=\frac{\sin x}{1+\cos x}\)
d) \(\frac{1}{1+\tan x}+\frac{1}{1+\cot x}=1\)
e) \(\left(1-\frac{1}{\cos x}\right)\left(1+\frac{1}{\cos x}\right)+\tan^2x=0\)
Rút gọn các biểu thức sau
1, \(\dfrac{1+\cot x}{1-\cot x}-\dfrac{2+2\cot^2x}{\left(\tan x-1\right)\left(\tan^2x+1\right)}\)
2, \(\sqrt{\sin^4x+6\cos^2x+3\cos^4x}+\sqrt{\cos^4x+6\sin^2x+3\sin^4x}\)