\(\sqrt{1+x}+\sqrt{8-x}+\sqrt{\left(1+x\right)\left(8-x\right)}=3\) ĐK : \(-1\le x\le8\)
Đặt \(\sqrt{1+x}+\sqrt{8-x}=a\left(a\ge0\right)\)
\(\Leftrightarrow a+\frac{a^2-9}{2}=3\)
\(\Leftrightarrow a^2+2a-15=0\)
\(\Leftrightarrow\left(a-3\right)\left(a+5\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}a=3\left(N\right)\\a=-5\left(L\right)\end{matrix}\right.\)
Với \(a=3\)
\(\Leftrightarrow\sqrt{1+x}+\sqrt{8-x}=3\)
\(\Leftrightarrow9+2\sqrt{\left(1+x\right)\left(8-x\right)}=9\)
\(\Leftrightarrow\left(1+x\right)\left(8-x\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}1+x=0\\8-x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=8\end{matrix}\right.\left(TM\right)\)
Vậy \(S=\left\{-1;8\right\}\)
ĐKXĐ: \(-1\le x\le8\)
Đặt \(\sqrt{1+x}+\sqrt{8-x}=a>0\Rightarrow a^2=9+2\sqrt{\left(1+x\right)\left(8-x\right)}\)
\(\Rightarrow\sqrt{\left(1+x\right)\left(8-x\right)}=\frac{a^2-9}{2}\)
Phương trình trở thành:
\(a+\frac{a^2-9}{2}=3\Leftrightarrow a^2+2a-15=0\Rightarrow\left[{}\begin{matrix}a=3\\a=-5\left(l\right)\end{matrix}\right.\)
\(\Rightarrow\sqrt{1+x}+\sqrt{8-x}=3\)
Ta có \(\sqrt{1+x}+\sqrt{8-x}\ge\sqrt{1+x+8-x}=3\)
\(\Rightarrow\) Đẳng thức xảy ra khi và chỉ khi \(\left[{}\begin{matrix}1+x=0\\8-x=0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=-1\\x=8\end{matrix}\right.\)