Giải phương trình sau: \(81x^4+5=3\sqrt[3]{108x^3+12x}\)
Dễ thấy \(x>0\)
Ta có:
\(\left\{{}\begin{matrix}3\sqrt[3]{108x^3+12x}=3\sqrt[3]{2.6x.\left(9x^2+1\right)}\le9x^2+6x+3\\81x^4+5=81x^4+1+4\ge18x^2+4\end{matrix}\right.\)
\(\Rightarrow18x^2+4\le9x^2+6x+3\)
\(\Leftrightarrow9x^2-6x+1\le0\)
\(\Leftrightarrow\left(3x-1\right)^2\le0\)
Dấu = xảy ra khi \(x=\dfrac{1}{3}\)