Câu 1:
ĐKXĐ: \(sin4x\ne0\Rightarrow x\ne\frac{k\pi}{4}\)
\(\Leftrightarrow\frac{sin4x}{cosx}+\frac{sin4x}{sin2x}=2\Leftrightarrow4sinx.cos2x+2cos2x=2\)
\(\Leftrightarrow cos2x\left(2sinx+1\right)=1\Leftrightarrow\left(1-2sin^2x\right)\cdot\left(2sinx+1\right)=1\)
\(\Leftrightarrow2sinx-4sin^3x-2sin^2x=0\)
\(\Leftrightarrow sinx\left(-2sin^2x-sinx+1\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}sinx=0\left(l\right)\\sinx=-1\left(l\right)\\sinx=\frac{1}{2}\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=\frac{\pi}{6}+k2\pi\\x=\frac{5\pi}{6}+k2\pi\end{matrix}\right.\)
b/
ĐKXĐ: \(sin2x\ne0\Rightarrow x\ne\frac{k\pi}{2}\)
\(\Leftrightarrow\frac{sin^4x+cos^4x}{5}=\frac{1}{2}cos2x-\frac{1}{8}\)
\(\Leftrightarrow\left(sin^2x+cos^2x\right)^2-2\left(sinx.cosx\right)^2=\frac{5}{2}cos2x-\frac{5}{8}\)
\(\Leftrightarrow1-\frac{1}{2}sin^22x=\frac{5}{2}cos2x-\frac{5}{8}\)
\(\Leftrightarrow1-\frac{1}{2}\left(1-cos^22x\right)=\frac{5}{2}cos2x-\frac{5}{8}\)
\(\Leftrightarrow\frac{1}{2}cos^22x-\frac{5}{2}cos2x+\frac{9}{8}=0\)
\(\Rightarrow\left[{}\begin{matrix}cos2x=\frac{9}{2}>1\left(l\right)\\cos2x=\frac{1}{2}\end{matrix}\right.\) \(\Rightarrow x=\pm\frac{\pi}{6}+k\pi\)