tìm giá trị lớn nhất và giá trị nhỏ nhất của các hàm số sau
a)\(y=\left(3-sinx\right)^2+1\)
b)\(y=sin^4x+cos^4x\)
c)\(y=sin^6x+cos^6x\)
1, Giải phương trình :
a, sin2x - 2cos2x = 0
b, \(sin\left(4x+\frac{1}{2}\right)=\frac{1}{3}\)
c, \(sin^4x+cos^4x=\frac{3}{4}\)
d,\(\left(cosx-sinx\right)^2=1-cos3x\)
e,\(\left(cosx+sinx\right)^2=3sin2x\)
2. Phương trình : \(sin3x=cos^4x-sin^4x\) có tập nghiệm trùng với tập nghiệm cua phương trình nào sau đây :
A. cos2x = sin3x B. cos2x = -sin3x C. cos2x = sin2x D. cos2x = -sin2x
giải các pt
a) \(cosx+cos3x+\left(cos^4x-sin^4x\right).cos2x=0\)
b) \(cos^2\frac{x}{2}+sin^2x+cos2x=\frac{1}{2}\)
c) \(\left(tanx+cotx\right)^2+\frac{3}{sin2x}-7=0\)
Tìm nghiệm của các phương trinh:
1,\(\left(sinx+\dfrac{sin3x+cos3x}{1+2sin2x}\right)=\dfrac{3+cos2x}{5}\)
2,\(48-\dfrac{1}{cos^4x}-\dfrac{2}{sin^2x}\left(1+cot2xcotx\right)=0\)
3,\(cos^4x+sin^4x+cos\left(x-\dfrac{\pi}{4}\right)sin\left(3x-\dfrac{\pi}{4}\right)-\dfrac{3}{2}=0\)
4,\(cos5x+cos2x+2sin3xsin2x=0\) trên \(\left[0;2\pi\right]\)
5,\(\dfrac{cos\left(cosx+2sinx\right)+3sinx\left(sinx+\sqrt{2}\right)}{sin2x-1}=1\)
6,\(\left(sinx+\dfrac{sin3x+cos3x}{1+2sin2x}\right)=\dfrac{3+cos2x}{5}\)
7,\(cos\left(2x+\dfrac{\pi}{4}\right)+cos\left(2x-\dfrac{\pi}{4}\right)+4sinx=2+\sqrt{2}\left(1-sinx\right)\)
Tìm GTLN và GTNN của hàm số : 1. y = sinx + 2cosx +1 / 2sinx + cosx + 3
2.y= 2sin^2sinx - 3 sinx cosx + cos^2 x
Giải phương trình : 1. 2sin^2 * 2x + sin7x -1 = sinx
2.cos 4x + 12 sin^2 x -1 = 0
GIẢi các phương trình lượng giác
\(\left|\cos x\right|-\left|\sin x\right|-\cos2x\times\sqrt{1+\sin2x}\)
\(\sqrt{5\sin x+\cos2x}=-2\cos x\)
\(2\cos(x-45^0)-\cos(x-45^0)\times\sin2x-3\sin2x+4=0\)
\(\sin4x+2=\cos3x+4\sin x+\cos x\)
\(\cos^4x-\sin^4x=\left|\cos x\right|+\left|\sin x\right|\)
giải phương trình
1.\(sin^3x+2cosx-2+sin^2x=0\)
\(2.\frac{\sqrt{3}}{2}sin2x+\sqrt{2}cos^2x+\sqrt{6}cosx=0\)
3.\(2sin2x-cos2x=7sinx+2cosx-4\)
4.\(2cos2x-8cosx+7=\frac{1}{cosx}\)
5.\(cos^8x+sin^8x=2\left(cos^{10}x+sin^{10}x\right)+\frac{5}{4}cos2x\)
6.\(1+sinx+cos3x=cosx+sin2x+cos2x\)
7.\(1+sinx+cosx+sin2x+cos2x=0\)
Giải phương trình sau:
1) \(\frac{1}{cosx}+\frac{1}{sin2x}=\frac{2}{sin4x}\)
2) \(\frac{sin^4x+cos^4x}{5sin2x}=\frac{1}{2}cot2x-\frac{1}{8sin2x}\)
1,Giải phương trình:
a,\(cos^3x+sin^3x=cos2x\)
b,\(cos^3x+sin^3x=2sin2x+sinx+cosx\)
c,\(2cos^3x=sin3x\)
d,\(cos^2x-\sqrt{3}sin2x=1+sin^2x\)
e,\(cos^3x+sin^3x=2\left(cos^5x+sin^5x\right)\)