Nhận thấy pt có 2 nghiệm \(x=4\) và \(x=5\)
- Với \(x>5\Rightarrow\left\{{}\begin{matrix}x-5>0\\x-4>1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}\left|x-5\right|^{2007}>0\\\left|x-4\right|^{2008}>1\end{matrix}\right.\)
\(\Rightarrow VT>1>VP\Rightarrow\) pt vô nghiệm
- Với \(x< 4\Rightarrow\left\{{}\begin{matrix}\left|x-5\right|=\left|5-x\right|>1\\\left|x-4\right|>0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}\left|x-5\right|^{2007}=\left|5-x\right|^{2007}>1\\\left|x-4\right|^{2008}>0\end{matrix}\right.\)
\(\Rightarrow VT>1>VP\Rightarrow\) pt vô nghiệm
- Với \(4< x< 5\) viết lại pt: \(\left|5-x\right|^{2007}+\left|x-4\right|^{2008}=1\)
\(\left\{{}\begin{matrix}0< 5-x< 1\\0< x-4< 1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}\left|5-x\right|^{2007}< 5-x\\\left|x-4\right|^{2008}< x-4\end{matrix}\right.\)
\(\Rightarrow\left|5-x\right|^{2007}+\left|x-4\right|^{2008}< 5-x+x-4=1\)
\(\Rightarrow VT< VP\Rightarrow\) pt vô nghiệm
Vậy pt có đúng 2 nghiệm \(\left[{}\begin{matrix}x=4\\x=5\end{matrix}\right.\)