Ôn tập cuối năm phần số học

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Minh Duy Cù

Giải phương trình: \(\left|x-5\right|^{2007}+\left|x-4\right|^{2008}=1\)

Nguyễn Việt Lâm
28 tháng 4 2019 lúc 18:07

Nhận thấy pt có 2 nghiệm \(x=4\)\(x=5\)

- Với \(x>5\Rightarrow\left\{{}\begin{matrix}x-5>0\\x-4>1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}\left|x-5\right|^{2007}>0\\\left|x-4\right|^{2008}>1\end{matrix}\right.\)

\(\Rightarrow VT>1>VP\Rightarrow\) pt vô nghiệm

- Với \(x< 4\Rightarrow\left\{{}\begin{matrix}\left|x-5\right|=\left|5-x\right|>1\\\left|x-4\right|>0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}\left|x-5\right|^{2007}=\left|5-x\right|^{2007}>1\\\left|x-4\right|^{2008}>0\end{matrix}\right.\)

\(\Rightarrow VT>1>VP\Rightarrow\) pt vô nghiệm

- Với \(4< x< 5\) viết lại pt: \(\left|5-x\right|^{2007}+\left|x-4\right|^{2008}=1\)

\(\left\{{}\begin{matrix}0< 5-x< 1\\0< x-4< 1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}\left|5-x\right|^{2007}< 5-x\\\left|x-4\right|^{2008}< x-4\end{matrix}\right.\)

\(\Rightarrow\left|5-x\right|^{2007}+\left|x-4\right|^{2008}< 5-x+x-4=1\)

\(\Rightarrow VT< VP\Rightarrow\) pt vô nghiệm

Vậy pt có đúng 2 nghiệm \(\left[{}\begin{matrix}x=4\\x=5\end{matrix}\right.\)


Các câu hỏi tương tự
Ctuu
Xem chi tiết
Scarlett
Xem chi tiết
2012 SANG
Xem chi tiết
Phạm Thùy Trang
Xem chi tiết
Thành Nguyễn Hữu
Xem chi tiết
Tuấn Kiên Phạm
Xem chi tiết
Nguyễn Thị Diễm Quỳnh
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Phạm Thùy Trang
Xem chi tiết