Chương 2: HÀM SỐ BẬC NHẤT VÀ BẬC HAI

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Ichigo Hollow

giải phương trình : \(\dfrac{x^2+x+1}{x^2+2x+1}+\dfrac{x^2+3x+1}{x^2+4x+1}=\dfrac{19}{12}\)

Nguyễn Việt Lâm
10 tháng 11 2018 lúc 20:34

Pt tương đương:

\(\dfrac{x^2+2x+1-x}{x^2+2x+1}+\dfrac{x^2+4x+1-x}{x^2+4x+1}=\dfrac{19}{12}\Leftrightarrow1-\dfrac{x}{x^2+2x+1}+1-\dfrac{x}{x^2+4x+1}=\dfrac{19}{12}\)

\(\Leftrightarrow-\dfrac{x}{x^2+2x+1}-\dfrac{x}{x^2+4x+1}+\dfrac{5}{12}=0\)

\(\Leftrightarrow\left(\dfrac{1}{4}-\dfrac{x}{x^2+2x+1}\right)+\left(\dfrac{1}{6}-\dfrac{x}{x^2+4x+1}\right)=0\)

\(\Leftrightarrow\dfrac{x^2-2x+1}{4\left(x^2+2x+1\right)}+\dfrac{x^2-2x+1}{6\left(x^2+4x+1\right)}=0\)

\(\Leftrightarrow\left(x-1\right)^2\left(\dfrac{1}{4\left(x^2+2x+1\right)}+\dfrac{1}{6\left(x^2+4x+1\right)}\right)=0\)

\(\Leftrightarrow\left(x-1\right)^2\dfrac{\left(10x^2+32x+10\right)}{24\left(x+1\right)^2\left(x^2+4x+1\right)}=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\10x^2+32x+10=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=\dfrac{-8+\sqrt{39}}{5}\\x=\dfrac{-8-\sqrt{39}}{5}\end{matrix}\right.\)


Các câu hỏi tương tự
nguyen ngoc son
Xem chi tiết
Bích Lê
Xem chi tiết
Nguyen Tam
Xem chi tiết
Linh Nguyen
Xem chi tiết
Bảo Bình
Xem chi tiết
2003
Xem chi tiết
Dennis
Xem chi tiết
ngan kim
Xem chi tiết
Quỳnh Như Trần Thị
Xem chi tiết