Câu b : \(x^2-5x+14=4\sqrt{x+1}\) ( ĐK : \(x\ge-1\) )
\(\Leftrightarrow x^2-5x+14-4\sqrt{x+1}=0\)
\(\Leftrightarrow\left(x^2-6x+9\right)+\left[\left(x+1\right)-4\sqrt{x+1}+4\right]=0\)
\(\Leftrightarrow\left(x-3\right)^2+\left(\sqrt{x+1}-2\right)^2=0\)
Do : \(\left\{{}\begin{matrix}\left(x-3\right)^2\ge0\\\left(\sqrt{x+1}-2\right)^2\ge0\end{matrix}\right.\Rightarrow\left(x-3\right)^2+\left(\sqrt{x+1}-2\right)^2=0\Leftrightarrow\left\{{}\begin{matrix}\left(x-3\right)^2=0\\\left(\sqrt{x+1}-2\right)^2=0\end{matrix}\right.\Leftrightarrow x=3\)
Vậy \(x=3\)
a. Ta có : x2 + x = 36 - 12\(\sqrt{x+1}\)
⇌ x2 + 2x + 1 = 36 - 12\(\sqrt{x+1}\) + x + 1
⇌ (x+1)2 = ( \(\sqrt{x+1}\) -6)2
⇌ (x+1)2 - ( \(\sqrt{x+1}\) -6)2 = 0
còn lại tự làm nha