a) ta có:
(x-3)(x-5)(x-6)(x-10)=24x2
<=> \(\left[\left(x-3\right)\left(x-10\right)\right]\left[\left(x-5\right)-\left(x-6\right)\right]=24x^2\)
<=> \(\left(x^2-13x+30\right)\left(x^2-11x+30\right)=24x^2\)
<=> \(\left(x^2-12x+20-x\right)\left(x^2-12x+30+x\right)=24x^2\)
<=> \(\left(x^2-12x+30\right)^2-x^2=24x^2\)
<=> \(\left(x^2-12x+30\right)^2-x^2-24x^2=0\)
<=> \(\left(x^2-12x+30\right)^2-25x^2=0\)
<=> \(\left(x^2-17x+30\right)\left(x^2-7x+30\right)=0\)
mà x2-7x+30=(x-\(\dfrac{7}{2}\))2+\(\dfrac{71}{4}\)> 0
=> x2-17x+30=0
<=> (x-15)(x-2)=0
=>\(\left[{}\begin{matrix}x-15=0\\x-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=15\\x=2\end{matrix}\right.\)
Vậy S=\(\left\{15;2\right\}\)
b) ta có:
(x+1)(x+2)(x+4)(x+5)=40
<=> \(\left[\left(x+1\right)\left(x+5\right)\right]\left[\left(x+2\right)\left(x+4\right)\right]=40\)
<=> (x2+6x+5)(x2+6x+8)=40
<=> (x2+6x+6,5-1,5)(x2+6x+6,5+1,5)=40
<=> (x2+6x+6,5)2 _ 2,25=40
<=> (x2+6x+6,5)2 _ 42,25=0
<=> (x2+6x+6,5-6,5)(x2+6x+6,5+6,5)=0
<=> (x2+6x)(x2+6x+13)=0
mà x2+6x+13=(x+3)2+4>0
=> x2+6x=0
<=> x(x+6)=0
=>\(\left[{}\begin{matrix}x=0\\x+6=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-6\end{matrix}\right.\)
Vậy S=\(\left\{0;-6\right\}\)
b)
\(\Rightarrow\left(x+1\right)\left(x+5\right)\left(x+2\right)\left(x+4\right)=40\)
\(\Rightarrow\left(x^2+5x+x+5\right)\left(x^2+4x+2x+8\right)=40\)
\(\Rightarrow\left(x^2+6x+5\right)\left(x^2+6x+8\right)=40\)
Đặt: \(a=x^2+6x+5\)
\(\Rightarrow a.\left(a+3\right)=40\)
Mà:\(40=5.8\)
\(\Rightarrow a=5\)
Học tốt !!! :)
cau a bang 5 nha bn
chuc bn hoc tot
happy new year