Bài 1:
\(\frac{x+1}{94}+\frac{x+2}{93}+\frac{x+3}{92}=\frac{x+4}{91}+\frac{x+5}{90}+\frac{x+6}{89}\)
\(\Rightarrow\left(\frac{x+1}{94}+1\right)+\left(\frac{x+2}{93}+1\right)+\left(\frac{x+3}{92}+1\right)=\left(\frac{x+4}{91}+1\right)+\left(\frac{x+5}{90}+1\right)+\left(\frac{x+6}{89}+1\right)\)
\(\Rightarrow\frac{x+95}{94}+\frac{x+95}{93}+\frac{x+95}{92}=\frac{x+95}{91}+\frac{x+95}{90}+\frac{x+95}{89}\)
\(\Rightarrow\frac{x+95}{94}+\frac{x+95}{93}+\frac{x+95}{92}-\frac{x+95}{91}-\frac{x+95}{90}-\frac{x+95}{89}=0\)
\(\Rightarrow\left(x+95\right)\left(\frac{1}{94}+\frac{1}{93}+\frac{1}{92}-\frac{1}{91}-\frac{1}{90}-\frac{1}{89}\right)=0\)
Mà \(\frac{1}{94}+\frac{1}{93}+\frac{1}{92}-\frac{1}{91}-\frac{1}{90}-\frac{1}{89}\ne0\)
\(\Rightarrow x+95=0\)
\(\Rightarrow x=-95\)
Vậy x = -95
Bài 2: tương tự
\(\frac{x+1}{94}\)+\(\frac{x+2}{93}\)+\(\frac{x +3}{92}\)= \(\frac{x+4}{91}\)+ \(\frac{x+5}{90}\)+ \(\frac{x+6}{89}\)
<=> [(\(\frac{x+1}{94}\)+\(\frac{x+2}{93}\)+\(\frac{x+3}{92}\)+3)]= [(\(\frac{x+4}{91}\)+\(\frac{x+5}{90}\)+\(\frac{x+6}{89}\)+3)]
<=> [(\(\frac{x+1}{94}\)+1)+(\(\frac{x+2}{93}\)+1)+(\(\frac{x+3}{92}\)+1)]- [(\(\frac{x+4}{91}\)+1)+(\(\frac{x+5}{90}\)+1)+(\(\frac{x+6}{89}\)+1)] =0
<=> [(\(\frac{x+1}{94}\)+ \(\frac{94}{94}\))+(\(\frac{x+2}{93}\)+\(\frac{93}{93}\))+(\(\frac{x+3}{92}\)+\(\frac{92}{92}\))] -[(\(\frac{x+4}{91}\)+\(\frac{91}{91}\))+(\(\frac{x+5}{90}\)+\(\frac{90}{90}\))+(\(\frac{x+6}{89}\)+\(\frac{89}{89}\))] =0
<=> (\(\frac{x+95}{94}\)+\(\frac{x+95}{93}\)+\(\frac{x+95}{92}\)) -(\(\frac{x+95}{91}\)+\(\frac{x+95}{90}\)+\(\frac{x+95}{89}\)) =0
<=> (x+95)( \(\frac{1}{94}\)+\(\frac{1}{93}\)+\(\frac{1}{92}\)-\(\frac{1}{91}\)-\(\frac{1}{90}\)-\(\frac{1}{89}\)) =0
Vì (\(\frac{1}{94}\)+\(\frac{1}{93}\)+\(\frac{1}{92}\)-\(\frac{1}{91}\)-\(\frac{1}{90}\)-\(\frac{1}{89}\)) \(\ne\) 0
=> x+95=0
<=> x= -95
Vậy S={-95}